Align phenylacetaldehyde dehydrogenase (EC 1.2.1.39) (characterized)
to candidate PfGW456L13_3737 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= BRENDA::P80668 (499 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3737 Length = 496 Score = 512 bits (1319), Expect = e-149 Identities = 253/495 (51%), Positives = 346/495 (69%), Gaps = 1/495 (0%) Query: 5 HVAVLSQVQQFLDRQHGLYIDGRPGPAQSEKRLAIFDPATGQEIASTADANEADVDNAVM 64 +V +L QV FL+R+HG +IDG+ A+ + +A+ +PATGQ + T DA V+ AV Sbjct: 3 NVEILPQVAAFLERRHGCFIDGQWVLAEGDS-IAVVNPATGQTLCETLDAPLELVERAVQ 61 Query: 65 SAWRAFVSRRWAGRLPAERERILLRFADLVEQHSEELAQLETLEQGKSIAISRAFEVGCT 124 S+ +AF S W+ PA+RERILL F LVE+H+EELAQLETL QGKSI ++RA ++ T Sbjct: 62 SSHKAFKSGVWSSLRPADRERILLNFTRLVEEHAEELAQLETLSQGKSINMARALDLNAT 121 Query: 125 LNWMRYTAGLTTKIAGKTLDLSIPLPQGARYQAWTRKEPVGVVAGIVPWNFPLMIGMWKV 184 + +MRY +G TKI G+T D+SIPLP GA++ A+T++EPVGVV GIVPWNFPL+I WK+ Sbjct: 122 VEFMRYMSGWATKIEGQTFDVSIPLPPGAKFTAFTKREPVGVVVGIVPWNFPLLIAAWKL 181 Query: 185 MPALAAGCSIVIKPSETTPLTMLRVAELASEAGIPDGVFNVVTGSGAVCGAALTSHPHVA 244 MPALA GC+++IKP+ TPLT +R+AELA EAGIP GVFNVVTG GA G LT HP V+ Sbjct: 182 MPALATGCTVIIKPAMETPLTAMRLAELALEAGIPAGVFNVVTGGGASVGGVLTQHPLVS 241 Query: 245 KISFTGSTATGKGIARTAADHLTRVTLELGGKNPAIVLKDADPQWVIEGLMTGSFLNQGQ 304 K+SFTGSTA GK + +++TR +LELGGKNP IVL DAD + ++G + G LN GQ Sbjct: 242 KVSFTGSTAVGKSVGVACMENMTRFSLELGGKNPMIVLADADIEKAVQGAILGGLLNNGQ 301 Query: 305 VCAASSRIYIEAPLFDTLVSGFEQAVKSLQVGPGMSPVAQINPLVSRAHCDKVCSFLDDA 364 VCAA+SR Y+ + D V AV S+ +G GM+ A INPLVSR V ++ A Sbjct: 302 VCAAASRFYVHRSIHDQFVEALAAAVSSMPIGAGMNCDAAINPLVSRKQQQSVLKHIELA 361 Query: 365 QAQQAELIRGSNGPAGEGYYVAPTLVVNPDAKLRLTREEVFGPVVNLVRVADGEEALQLA 424 + Q A ++ G G+G++V PT++ + D + + REEVFGPV+ ++ D + ++LA Sbjct: 362 RQQGARVVTGGELLEGDGFFVQPTILADIDHSMAVAREEVFGPVLGVMPFDDEDAVIELA 421 Query: 425 NDTEYGLTASVWTQNLSQALEYSDRLQAGTVWVNSHTLIDANLPFGGMKQSGTGRDFGPD 484 ND YGL AS+WT +L +A+ R++AGTVWVN+H L+D +PFGG+KQSG GR+FG Sbjct: 422 NDNRYGLAASLWTNDLGKAMNLVPRIEAGTVWVNAHVLLDPAMPFGGVKQSGMGREFGRA 481 Query: 485 WLDGWCETKSVCVRY 499 ++ + E KSVC+ + Sbjct: 482 VIEAYTELKSVCIAH 496 Lambda K H 0.318 0.133 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 712 Number of extensions: 24 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 496 Length adjustment: 34 Effective length of query: 465 Effective length of database: 462 Effective search space: 214830 Effective search space used: 214830 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory