Align 4-(gamma-glutamylamino)butanal dehydrogenase (EC 1.2.1.99) (characterized)
to candidate PfGW456L13_1397 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= BRENDA::P23883 (495 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1397 Length = 496 Score = 511 bits (1317), Expect = e-149 Identities = 258/492 (52%), Positives = 341/492 (69%), Gaps = 4/492 (0%) Query: 6 LAYWQDKALSLAIENRLFINGEYTAAAENETFETVDPVTQAPLAKIARGKSVDIDRAMSA 65 L YWQ KA SL ++ I+G+ A +TF ++P T LA +A D++ A+ Sbjct: 4 LEYWQRKAASLRFPDQAVIDGQRRPAQSGQTFAAINPATSQCLANVAACGEEDVNAAVHN 63 Query: 66 ARGVFERGDWSLSSPAKRKAVLNKLADLMEAHAEELALLETLDTGKPIRHSLRDDIPGAA 125 AR VFE G W+ SP +RK VL +LADL+ + EELALL++L+ GKP+ + D+PGAA Sbjct: 64 ARQVFEAGTWAARSPTERKQVLLRLADLILENREELALLDSLNMGKPVADAYNIDVPGAA 123 Query: 126 RAIRWYAEAIDKVYGEVATTSSHELAMIVREPVGVIAAIVPWNFPLLLTCWKLGPALAAG 185 RWYAE++DK+Y +VA ++ + LA I RE +GV+AA+VPWNFPL + WKL PALAAG Sbjct: 124 GVFRWYAESLDKLYDQVAPSAQNVLATITREALGVVAAVVPWNFPLDMAAWKLAPALAAG 183 Query: 186 NSVILKPSEKSPLSAIRLAGLAKEAGLPDGVLNVVTGFGHEAGQALSRHNDIDAIAFTGS 245 NSVILKP+E+SP SA+RLA LA EAG+P GVLNV+ G G + G+AL H D+D + FTGS Sbjct: 184 NSVILKPAEQSPFSALRLAELALEAGVPAGVLNVLPGLGEQTGKALGLHPDVDCLVFTGS 243 Query: 246 TRTGKQLLKDAGDSNMKRVWLEAGGKSANIVFADCPDLQQAASATAAGIFYNQGQVCIAG 305 T GK ++ + SN+K+VWLE GGKSAN+VFADC DL AA A GIF+NQG+VC A Sbjct: 244 TEVGKYFMQYSAQSNLKQVWLECGGKSANLVFADCQDLDLAAEKAAFGIFFNQGEVCSAN 303 Query: 306 TRLLLEESIADEFLALLKQQAQNWQPGHPLDPATTMGTLIDCAHADSVHSFIREGESKGQ 365 +RLL++ SI DEF+ LK QA+ W PG PLDP++ G ++D + FI++ E +G Sbjct: 304 SRLLVQRSIHDEFVERLKAQAERWLPGDPLDPSSAAGAIVDSRQTARIMKFIQQAEQQGA 363 Query: 366 L-LLDGRNA---GLAAAIGPTIFVDVDPNASLSREEIFGPVLVVTRFTSEEQALQLANDS 421 + GR + G I PTIF V P+ L R+E+FGPVL VT F E ALQLANDS Sbjct: 364 TRICGGRQSIINGSDNFIQPTIFTGVTPDMPLFRDEVFGPVLAVTAFDDEAHALQLANDS 423 Query: 422 QYGLGAAVWTRDLSRAHRMSRRLKAGSVFVNNYNDGDMTVPFGGYKQSGNGRDKSLHALE 481 YGL A++WT DL+RAHR++R+L+AG+V VN+ + D+TVPFGG KQSG GRD SLH+ + Sbjct: 424 VYGLAASLWTDDLNRAHRVARQLRAGTVSVNSVDALDVTVPFGGGKQSGFGRDLSLHSFD 483 Query: 482 KFTELKTIWISL 493 K+T+LKT W L Sbjct: 484 KYTQLKTTWFQL 495 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 638 Number of extensions: 20 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 496 Length adjustment: 34 Effective length of query: 461 Effective length of database: 462 Effective search space: 212982 Effective search space used: 212982 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory