Align ABC-type sugar transport system, ATPase component protein (characterized, see rationale)
to candidate PfGW456L13_2346 glutamine ABC transporter ATP-binding component
Query= uniprot:D8IUD1 (522 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_2346 Length = 515 Score = 93.6 bits (231), Expect = 2e-23 Identities = 74/228 (32%), Positives = 118/228 (51%), Gaps = 13/228 (5%) Query: 8 SQGSPLLTLSGIGKRYAA-PVLDGIDLDLRPGQVLALTGENGAGKSTLSKIICGLVDASA 66 + +P+L L I K Y VL GIDL++ GQV+++ G +G+GK++L + + GL Sbjct: 255 NNATPILQLKNIQKSYGTHQVLMGIDLNVEYGQVVSIIGPSGSGKTSLIRTVNGLETIDT 314 Query: 67 GGMMLDGQPYAPAS------RTQAEGLGIRMVMQELNLIPTLSIAENLFLEKLPRRFGWI 120 G ++L G+ + AS R + I MV Q NL P +I +N+ L PR G Sbjct: 315 GDILLFGEKFIEASDKPNSTRLRKGVRHIGMVFQNFNLFPHRTILDNVTLA--PRYHG-- 370 Query: 121 DRKKLAE-AARAQMEVVGLGELDPWTPVGDLGLGHQQMVEIARNLIGSCRCLILDEPTAM 179 +L+E A A ++ VGL P L G QQ V IAR L + ++ DEPT+ Sbjct: 371 QPGELSEHRAYALLDKVGLLAHAHKYP-HQLSGGQQQRVAIARALAMEPQIMLFDEPTSA 429 Query: 180 LTNREVELLFSRIERLRAEGVAIIYISHRLEELKRIADRIVVLRDGKL 227 L V + + I L EG+ ++ ++H ++ I+DR+V + +G + Sbjct: 430 LDPELVNDVLNVIRDLAKEGMTMLIVTHEMDFAMSISDRVVFMENGNI 477 Score = 86.7 bits (213), Expect = 2e-21 Identities = 74/263 (28%), Positives = 123/263 (46%), Gaps = 23/263 (8%) Query: 264 PVLRIRGLGRAPVVHPA----SLALHAGEVLGIAGLIGSGRTELLRLIFGADRAEQGEIF 319 P+L+++ + ++ H L + G+V+ I G GSG+T L+R + G + + G+I Sbjct: 259 PILQLKNIQKSYGTHQVLMGIDLNVEYGQVVSIIGPSGSGKTSLIRTVNGLETIDTGDIL 318 Query: 320 I-GDSQEPARIRSPKDAVKAGIAMVTEDRKGQGLLLPQAISVNTSLANLGSVSRGGMLDH 378 + G+ A + ++ G+ + + L + I N +LA G + +H Sbjct: 319 LFGEKFIEASDKPNSTRLRKGVRHIGMVFQNFNLFPHRTILDNVTLAPRYHGQPGELSEH 378 Query: 379 AAESSVAQDYVKKLRIRSGSVAQA---AGELSGGNQQKVVIARWLYRDCPIMLFDEPTRG 435 A + L + G +A A +LSGG QQ+V IAR L + IMLFDEPT Sbjct: 379 RAYA---------LLDKVGLLAHAHKYPHQLSGGQQQRVAIARALAMEPQIMLFDEPTSA 429 Query: 436 IDIGAKSDIYRLFAELAAQGKGLLVVSSDLRELMQICDRIAVMSAGRI----ADTFSRDD 491 +D +D+ + +LA +G +L+V+ ++ M I DR+ M G I A R D Sbjct: 430 LDPELVNDVLNVIRDLAKEGMTMLIVTHEMDFAMSISDRVVFMENGNIQLDAAPETIRCD 489 Query: 492 WSQERILAAAFSGYVGRQEAAAA 514 ER+ F G R + +A Sbjct: 490 AEGERV--RRFMGISARSPSRSA 510 Lambda K H 0.320 0.137 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 496 Number of extensions: 24 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 522 Length of database: 515 Length adjustment: 35 Effective length of query: 487 Effective length of database: 480 Effective search space: 233760 Effective search space used: 233760 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory