Align NAD(P)+ L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate PfGW456L13_2360 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-16244 (495 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_2360 Length = 496 Score = 414 bits (1064), Expect = e-120 Identities = 217/501 (43%), Positives = 317/501 (63%), Gaps = 13/501 (2%) Query: 1 MSLPLFVPIKLPNGTTYEQPTGLFINNEFVQSKSKKTFGTVSPSTEEEITQVYEAFSEDI 60 MSLP +P ++ + I ++V++ +T +P+T E + V A ED+ Sbjct: 1 MSLPNLLPA---TSAFIQRAPRMLIGGDWVEAADGQTMPLHNPATGEVLCVVPRATPEDV 57 Query: 61 DDAVEAATAAFH-SSWSTSDPQVRMKVLYKLADLIDEHADTLAHIEALDNGKSLMCSKG- 118 D AV AA AF S+W+ + P+ R +L+KLADL+ A+ LA +E L+NGKS ++ Sbjct: 58 DRAVLAARQAFDDSAWTRTRPRERQNLLWKLADLMQRDAELLAQLECLNNGKSAAVAQVM 117 Query: 119 DVALTAAYFRSCAGWTDKIKGSVIETG------DTHFNYTRREPIGVCGQIIPWNFPLLM 172 DV L + R AGW KI+GS ++ D ++ RRE +GV G I+ WNFPLL+ Sbjct: 118 DVQLAIDFLRYMAGWATKIEGSTVDVSAPLMPNDQFHSFIRREAVGVVGAIVAWNFPLLL 177 Query: 173 ASWKLGPVLCTGCTTVLKTAESTPLSALYLASLIKEAGAPPGVVNVVSGFGPTAGAPISS 232 A WKLGP L TGCT VLK A+ TPL+AL LA L+ EAG P GV NVV+G G TAG+ ++ Sbjct: 178 ACWKLGPALATGCTVVLKPADETPLTALKLAELVLEAGYPEGVFNVVTGTGITAGSALTH 237 Query: 233 HPKIKKVAFTGSTATGRHIMKAAAESNLKKVTLELGGKSPNIVFDDADVKSTIQHLVTGI 292 +P + K+ FTGSTA G+ I K A +S + +VTLELGGKSP IV DAD+K+ + I Sbjct: 238 NPLVDKLTFTGSTAVGKQIGKIAMDS-MTRVTLELGGKSPTIVMADADLKTAAAGAASAI 296 Query: 293 FYNTGEVCCAGSRIYVQEGIYDKIVSEFKNAAESLKIGDPFKEDTFMGAQTSQLQLDKIL 352 F+N G+VCCAGSR+YVQ +D +V++ + A ++K+G+ MG S Q +++ Sbjct: 297 FFNQGQVCCAGSRLYVQRKHFDNVVADISDIANAMKLGNGLDPSVDMGPLISARQQERVY 356 Query: 353 KYIDIGKKEGATVITGGERFGNKGYFIKPTIFGDVKEDHQIVRDEIFGPVVTITKFKTVE 412 YI+ G++ GAT+ GGE+FG G+F+KPT+ DV + H +V++EIFGPV+ F Sbjct: 357 GYIEKGRESGATIACGGEQFG-PGFFVKPTVIVDVDQKHSLVQEEIFGPVLVAIPFDDEA 415 Query: 413 EVIALANDSEYGLAAGVHTTNLSTAISVSNKINSGTIWVNTYNDFHPMVPFGGYSQSGIG 472 + + +ANDS YGL A + + +L+ + +I SG++WVN ++ P +PFGGY SG+G Sbjct: 416 DALRMANDSPYGLGASIWSNDLAAVHRMIPRIKSGSVWVNCHSALDPALPFGGYKMSGVG 475 Query: 473 REMGEEALDNYTQVKAVRIGL 493 REMG A+++YT++K+V I L Sbjct: 476 REMGYAAIEHYTELKSVLIKL 496 Lambda K H 0.316 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 638 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 496 Length adjustment: 34 Effective length of query: 461 Effective length of database: 462 Effective search space: 212982 Effective search space used: 212982 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory