Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate PfGW456L13_3880 Succinate-semialdehyde dehydrogenase [NAD] (EC 1.2.1.24); Succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16)
Query= BRENDA::A6T8Z5 (462 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3880 Length = 463 Score = 638 bits (1645), Expect = 0.0 Identities = 323/463 (69%), Positives = 368/463 (79%), Gaps = 1/463 (0%) Query: 1 MMNLSA-THAVSVNPTTGEVVSSLPWASEREVDAAITLAAAGYRQWRQTPLADRADALRR 59 M N+S+ THA+S+NP TGE + P+ S+ + AA+T AA G+R WR P+ RA L Sbjct: 1 MTNVSSLTHAISINPATGEQIGHYPFESDSALQAALTRAATGFRAWRGKPVEQRAQLLIN 60 Query: 60 IGAALRARGEEVAQMITLEMGKPIAQARGEVAKSANLCDWYAEHGPAMLATEATLVENNQ 119 +G ALR + +A MIT EMGKPIAQARGE+ K A LC WYAEHGPAML+ E TLVE + Sbjct: 61 LGQALRNNAQAMANMITQEMGKPIAQARGEIEKCAQLCQWYAEHGPAMLSPEPTLVEGGK 120 Query: 120 AVIEYRPLGAILAVMPWNFPVWQVMRGAVPILLAGNSYLLKHAPNVMGSARLLGEIFAAA 179 A IEYRPLG ILAVMPWNFP+WQV+RGAVP LLAGN+Y+LKHAPNVMGS LL E F A Sbjct: 121 ARIEYRPLGPILAVMPWNFPIWQVLRGAVPTLLAGNTYVLKHAPNVMGSTYLLLEAFKQA 180 Query: 180 GLPDGVFGWVNATNDGVSQIINDDRIAAVTVTGSVRAGKAIGAQAGAALKKCVLELGGSD 239 P+GVF +N T DGVS+ I D RIAAVT+TGSVRAG AIGAQAGAALKKCVLELGGSD Sbjct: 181 DFPEGVFEVINVTPDGVSKAIADPRIAAVTLTGSVRAGMAIGAQAGAALKKCVLELGGSD 240 Query: 240 PFIVLNDADLDEAVKAAVTGRYQNSGQVCAASKRFILEAGIAEAFTRKFVDAVAALKMGD 299 PFIVL+DADLDEAVKAAV GRYQN+GQVCAA+KR I+E GIA FTRKFV+A L +GD Sbjct: 241 PFIVLDDADLDEAVKAAVIGRYQNTGQVCAAAKRLIVEQGIAREFTRKFVEATQQLVVGD 300 Query: 300 PRDEQNYVGPMARFDLRDELHQQVTATLDEGATLLLGAEKIEGAGNYYAPTVLGNVTAGM 359 P Y+GPMARFDLRDEL QQV TL EGATLL+G +K EG GNYY PTVLG+VT M Sbjct: 301 PLATTTYIGPMARFDLRDELDQQVRDTLKEGATLLMGGKKAEGPGNYYEPTVLGDVTDQM 360 Query: 360 TGFRQELFGPVATLTTARDADHALALANDSEFGLSATVYTTDEAQAQRFARELECGGVFL 419 T F+QELFGPVA++ TARDA HAL LANDSEFGL+AT+YT + AQ+ A ELE GGVF+ Sbjct: 361 TSFKQELFGPVASIITARDAAHALELANDSEFGLTATLYTRNVELAQQMASELETGGVFI 420 Query: 420 NGYCASDARVAFGGVKKSGFGRELSHFGLHEFCNAQTVWKDRR 462 NGY ASD RV+FGGVKKSGFGRELSHFG+ EFCNAQTVW DRR Sbjct: 421 NGYSASDPRVSFGGVKKSGFGRELSHFGVREFCNAQTVWLDRR 463 Lambda K H 0.319 0.133 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 615 Number of extensions: 10 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 462 Length of database: 463 Length adjustment: 33 Effective length of query: 429 Effective length of database: 430 Effective search space: 184470 Effective search space used: 184470 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory