Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate PfGW456L13_495 Succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16)
Query= BRENDA::P51650 (523 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_495 Length = 480 Score = 540 bits (1392), Expect = e-158 Identities = 263/478 (55%), Positives = 359/478 (75%), Gaps = 8/478 (1%) Query: 46 LLRGDSFVGGRWLPTP--ATFPVYDPASGAKLGTVADCGVPEARAAVRAAYDAFSSWKEI 103 L R +F+ G W+ T V +PA+G LGTV G E R A+ AA A +W+ + Sbjct: 8 LFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKALPAWRAL 67 Query: 104 SVKERSSLLRKWYDLMIQNKDELAKIITAESGKPLKEAQGEILYSAFFLEWFSEEARRVY 163 + KER++ LR+WY+L+I+N+D+LA+++T E GKPL EA+GEI+Y+A F+EWF+EEA+R+Y Sbjct: 68 TAKERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFAEEAKRIY 127 Query: 164 GDIIYTSAKDKRGLVLKQPVGVASIITPWNFPSAMITRKVGAALAAGCTVVVKPAEDTPY 223 GD+I DKR +V+KQP+GV + ITPWNFP+AMITRK G ALAAGCT+V+KPA TP+ Sbjct: 128 GDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTPF 187 Query: 224 SALALAQLANQAGIPPGVYNVIPCSRTKAKEVGEVLCTDPLVSKISFTGSTATGKILLHH 283 SA ALA+LA +AGIP GV++V+ S A ++G L ++P+V K+SFTGST G+ L+ Sbjct: 188 SAFALAELAQRAGIPAGVFSVVSGS---AGDIGSELTSNPIVRKLSFTGSTEIGRQLMSE 244 Query: 284 AANSVKRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNAGQTCVCSNRFLVQRGIHDS 343 A +K+VS+ELGG APFIVFD A++D+AV GA+ SK+RN GQTCVC+NR +Q G++D+ Sbjct: 245 CAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDGVYDA 304 Query: 344 FVTKFAEAMKKSLRVGNGFEEGTTQGPLINEKAVEKVEKHVNDAVAKGATVVTGGKRHQS 403 F K A+ K L++GNG E GTT GPLI+EKAV KV++H+ DA++KGATV+ GGK + Sbjct: 305 FAEKLKVAVAK-LKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKPME- 362 Query: 404 GGNFFEPTLLSNVTRDMLCITEETFGPVAPVIKFDKEEEAVAIANAADVGLAGYFYSQDP 463 GNFFEPT+L+NV + EETFGP+AP+ +F E + +A++N + GLA YFY++D Sbjct: 363 -GNFFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYARDL 421 Query: 464 AQIWRVAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLEVKYVCYG 521 +++RVAE LE GMVGVN GLIS+ PFGG+K SGLGREGSKYGI++YLE+KY+C G Sbjct: 422 GRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCLG 479 Lambda K H 0.318 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 605 Number of extensions: 18 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 480 Length adjustment: 34 Effective length of query: 489 Effective length of database: 446 Effective search space: 218094 Effective search space used: 218094 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory