Align D-ribose transporter ATP-binding protein; SubName: Full=Putative xylitol transport system ATP-binding protein; SubName: Full=Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate PfGW456L13_3911 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= uniprot:A0A1N7TX47 (495 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3911 Length = 517 Score = 309 bits (791), Expect = 2e-88 Identities = 190/492 (38%), Positives = 281/492 (57%), Gaps = 6/492 (1%) Query: 6 LLQAEHVAKAYAGVPALRDGRLSLRAGSVHALCGGNGAGKSTFLSILMGITQRDAGSILL 65 +L + K YA P L L+L G V AL G NGAGKST I+ G+ G + Sbjct: 9 VLSVSGIGKTYAQ-PVLAGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVTPTTGQMQY 67 Query: 66 NGAPVQFNRPSEALAAGIAMITQELEPIPYMTVAENIWLGREPRRAGCIVDNKALNRRTR 125 G + ++A A GI M+ QEL +P ++VAEN++L P + G I K L + Sbjct: 68 QGQDYRPGSRAQAEALGIRMVMQELNLLPTLSVAENLFLDNLPSKGGWI-SRKQLRKAAI 126 Query: 126 ELLDSLEFD-VDATSPMHRLSVAQIQLVEIAKAFSHDCQVMIMDEPTSAIGEHEAQTLFK 184 E + + D +D + + L + Q+VEIA+ DC V+I+DEPT+ + E + LF+ Sbjct: 127 EAMAHVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREVEMLFE 186 Query: 185 AIRRLTAQGAGIVYVSHRLSELAQIADDYSIFRDGAFVESGRMADIDRDHLVRGIVGQEL 244 I RL ++G I+Y+SHRL ELA++A ++ RDG V MA+ + + LV +VG+EL Sbjct: 187 QITRLQSRGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTLMVGREL 246 Query: 245 TRIDHKVGRECAANTCLQVDNLSRAGEFHDISLQLRQGEILGIYGLMGSGRSEFLNCIYG 304 R+ A L V+ LSR+ + D+S ++R GEI GI GL+G+GR+E L I+G Sbjct: 247 GEHIDMGARKIGAPV-LTVNGLSRSDKVRDVSFEVRAGEIFGISGLIGAGRTELLRLIFG 305 Query: 305 LTVADSGSVTLQGKPMPIGL--PKATINAGMSLVTEDRKDSGLVLTGSILSNIALSAYKR 362 +ADSG++ L I + P + G++L+TEDRK GL+LT SI +NIAL Sbjct: 306 ADIADSGTIALGAPAQVINVRSPVDAVGHGIALITEDRKGEGLLLTQSIGANIALGNMPG 365 Query: 363 LSSWSLINARKETQLAEDMVKRLQIKTTSLELPVASMSGGNQQKVVLAKCLSTEPVCLLC 422 +S ++ KE LA+ + ++I+++ V+ +SGGNQQKVV+ + L + LL Sbjct: 366 ISGAGFVDNDKERALAQRQIDAMRIRSSGPAQLVSELSGGNQQKVVIGRWLERDCSVLLF 425 Query: 423 DEPTRGIDEGAKQEIYHLLDQFVRGGGAAIVVSSEAPELLHLSDRIAVFKGGRLVTISTD 482 DEPTRGID GAK +IY+LL + R G A +VVSS+ EL+ + DRI V G L+ Sbjct: 426 DEPTRGIDVGAKFDIYNLLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGSLIDTFDR 485 Query: 483 TALSQEALLRLA 494 + +Q+ LL A Sbjct: 486 DSWTQDELLAAA 497 Lambda K H 0.319 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 612 Number of extensions: 32 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 517 Length adjustment: 34 Effective length of query: 461 Effective length of database: 483 Effective search space: 222663 Effective search space used: 222663 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory