Align ABC transporter for D-Glucose-6-Phosphate, periplasmic substrate-binding component (characterized)
to candidate PfGW456L13_1894 Glucose ABC transport system, periplasmic sugar-binding protein
Query= reanno::WCS417:GFF4324 (428 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1894 Length = 432 Score = 697 bits (1800), Expect = 0.0 Identities = 344/432 (79%), Positives = 378/432 (87%), Gaps = 4/432 (0%) Query: 1 MNAINRLAVAISIASL--FPLSAFAADSKGTVEVVHWWTSGGEKAAVDVLKAQVEKDGFV 58 MNAI+RLA IS+ASL PLS AA+SKG+VEVVHWWTSGGEKAAVDVLKAQVEKDGF Sbjct: 1 MNAISRLATVISLASLSALPLSVLAAESKGSVEVVHWWTSGGEKAAVDVLKAQVEKDGFT 60 Query: 59 WKDGAVAGGGGATAMTVLKSRAVAGNPPGVAQIKGPDIQEWASTGLLDTDVLKDVAKEEK 118 WKDGAVAGGGG+TAMTVLKSRAVAGNPPGVAQIKGPDIQEW STGLL TD LKDV+K E Sbjct: 61 WKDGAVAGGGGSTAMTVLKSRAVAGNPPGVAQIKGPDIQEWGSTGLLSTDALKDVSKAEN 120 Query: 119 WDSLLDKKVSDTVKYEGDYVAVPVNIHRVNWLWINPEVFKKAGITKNPTTLQEFYAAGDK 178 WD LL KKVSDTVKYEGDYVAVPVNIHRVNWLWINPEVFKKAGI K PTTL+EFYAAGDK Sbjct: 121 WDGLLSKKVSDTVKYEGDYVAVPVNIHRVNWLWINPEVFKKAGIEKAPTTLEEFYAAGDK 180 Query: 179 LKAAGFIPLAHGGQPWQDSTVFEAVVLSVMGADGYKKALVDLDNGALTGPEMVKALTELK 238 LKAAGFI LAHGGQPWQDSTVFE VVLSVMGADGYKKALVDLD L+GPEM K+ ELK Sbjct: 181 LKAAGFIALAHGGQPWQDSTVFEDVVLSVMGADGYKKALVDLDQKTLSGPEMTKSFAELK 240 Query: 239 KVATYMDVDGKGQDWNLEAGKVINGKAGMQIMGDWAKSEWTAAKKVAGKDYECVAFPGTD 298 K+ YMD + G+DWN+ A VI+GKAGMQ+MGDWAKSEWTAAKK+AGKDY+CVAFPGT+ Sbjct: 241 KITGYMDPNRAGRDWNIAAADVISGKAGMQMMGDWAKSEWTAAKKIAGKDYQCVAFPGTE 300 Query: 299 KAFTYNIDSLAVFKQK--DKGTAAGQQDIAKVVLGENFQKVFSINKGSIPVRNDMLNKMD 356 KAFTYNIDS+AVFK K KG A QQD+AKV LG +FQKVFS+NKGSIPVRNDMLN+MD Sbjct: 301 KAFTYNIDSMAVFKLKADRKGDIAAQQDLAKVALGTDFQKVFSMNKGSIPVRNDMLNEMD 360 Query: 357 SYGFDSCAQTAAKDFLADAKTGGLQPSMAHNMATTLAVQGAFFDVVTNYINDPKADPADT 416 GFD CAQ +AKDF+AD KTGGLQPSMAHNMAT+LAVQGA FDVVTN++ND ADPA Sbjct: 361 KLGFDECAQKSAKDFIADDKTGGLQPSMAHNMATSLAVQGAIFDVVTNFMNDKDADPAKA 420 Query: 417 AKKLGAAIKSAK 428 + +L +A+K+A+ Sbjct: 421 SAQLASAVKAAQ 432 Lambda K H 0.314 0.131 0.388 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 722 Number of extensions: 19 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 428 Length of database: 432 Length adjustment: 32 Effective length of query: 396 Effective length of database: 400 Effective search space: 158400 Effective search space used: 158400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (22.0 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory