Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate PfGW456L13_3911 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3911 Length = 517 Score = 333 bits (854), Expect = 9e-96 Identities = 194/511 (37%), Positives = 304/511 (59%), Gaps = 16/511 (3%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEILV 73 +L GI K + V +D + E+++L GENGAGKSTL KI+ G++ P G++ Sbjct: 9 VLSVSGIGKTYAQPVLA-GIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVTPTTGQMQY 67 Query: 74 NGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYM 133 G+ S A GI ++ QELNL ++VAEN+FL +G + + Sbjct: 68 QGQDYRPGSRAQAEALGIRMVMQELNLLPTLSVAENLFLDNLPSKG------GWISRKQL 121 Query: 134 YTRSKELLDLIGAK-FSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEET 192 + E + +G PD LV L +QMVEI + L+ + ++ +DEPT+ LT E Sbjct: 122 RKAAIEAMAHVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREV 181 Query: 193 ERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMM 252 E LFE I L+SRG+S++++SHRL+E+ R++ RI V+RDG + ++ + ++ +M Sbjct: 182 EMLFEQITRLQSRGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTLM 241 Query: 253 VGREV-EFFPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGRTETM 311 VGRE+ E G + G L V L DKV++VSFEVR GE+ G +GL+GAGRTE + Sbjct: 242 VGRELGEHIDMGAR-KIGAPVLTVNGLSRSDKVRDVSFEVRAGEIFGISGLIGAGRTELL 300 Query: 312 LLVFGVNQKESGDIYVNG--RKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVL 369 L+FG + +SG I + + + +++P DA+ GI LI EDRK +GL+L ++ NI L Sbjct: 301 RLIFGADIADSGTIALGAPAQVINVRSPVDAVGHGIALITEDRKGEGLLLTQSIGANIAL 360 Query: 370 PSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATN 429 ++ IS G V D KE +++ + + I++ Q+ LSGGNQQKVV+ +WL + Sbjct: 361 GNMPGISGAGFV-DNDKERALAQRQIDAMRIRSSGPAQLVSELSGGNQQKVVIGRWLERD 419 Query: 430 ADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEI 489 +L+FDEPTRGIDVGAK +I+ ++ EL QGKA++++SS+L E++ + DRI V+ G + Sbjct: 420 CSVLLFDEPTRGIDVGAKFDIYNLLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGSL 479 Query: 490 TAVLDNREKRVTQEEIMYYA-SGQKKQNGRV 519 D TQ+E++ A +G +K++ ++ Sbjct: 480 IDTFD--RDSWTQDELLAAAFAGYQKRDAQL 508 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 643 Number of extensions: 39 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 517 Length adjustment: 35 Effective length of query: 485 Effective length of database: 482 Effective search space: 233770 Effective search space used: 233770 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory