Align Leucine/isoleucine/valine ABC transporter,permease component (characterized, see rationale)
to candidate Pf1N1B4_1380 Branched-chain amino acid transport system permease protein LivM (TC 3.A.1.4.1)
Query= uniprot:G8ALI9 (505 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_1380 Length = 427 Score = 369 bits (947), Expect = e-106 Identities = 208/464 (44%), Positives = 278/464 (59%), Gaps = 52/464 (11%) Query: 4 ISMSSPRAIAWPSILKEAAMTAFVALLLTIPLVGLRTVDRPTGLGLETRWNEVAAAVGLV 63 +S ++ + I L +A + VAL++ P+VG+ +D G G VA V +V Sbjct: 1 MSSTTKKTIDLKRSLVDAILAGLVALIVFGPIVGV-VLD---GYGFNLEATRVAWIVAIV 56 Query: 64 FLGRLGLCLIREGHAVTVLVLAAAATAAGFFIAMPTEALRVILIAGGAVIAIRAVLAIRT 123 GR L L + ++ +T +G + P R+ Sbjct: 57 MAGRFALSLFLQTPKGLRILEGFESTGSGVHVLPPDYKSRL------------------- 97 Query: 124 GRSKLSQAERDKRMDHIAAQVQHASRWLGPIAVVVALAFPFTPLADRQLLDIGILLLTYI 183 RW+ P+ +V+A+ FPF ++ LL + IL L Y+ Sbjct: 98 -------------------------RWIIPVMIVIAVVFPF--FSNSYLLGVVILGLIYV 130 Query: 184 MLGWGLNIVVGLAGLLDLGYVAFYAVGAYSYALLAHYFGFSFWVCLPLAGFLAAMSGVLL 243 +LG GLNIVVGLAGLLDLGYVAFYA+GAY AL Y G FW LPLA A ++G +L Sbjct: 131 LLGLGLNIVVGLAGLLDLGYVAFYAIGAYGLALGYQYLGLGFWTVLPLAAITAGLAGCIL 190 Query: 244 GFPVLRLRGDYFAIVTLGFGEIIRIILINWYQFTGGPNGISGIPRPSFFGIADFTRTPAE 303 GFPVLRL GDY AIVTLGFGEIIR+IL NW TGGPNG++ P P+FFG+ +F + E Sbjct: 191 GFPVLRLHGDYLAIVTLGFGEIIRLILNNWLSLTGGPNGMAA-PLPTFFGL-EFGKRAKE 248 Query: 304 GTAAFHEMFGLEFSPLHRIIFLYYLILVLALVVNLFTMRVRKLPLGRAWEALREDDIACA 363 G FHE FG+ ++P + F+Y ++ ++ L V R+ ++P+GRAWEALRED+IAC Sbjct: 249 GGVPFHEFFGIAYNPDVKYYFIYAVLFLVVLAVLYIKHRLTRMPVGRAWEALREDEIACR 308 Query: 364 SLGINRTNMKLAAFAIAAMFGGFAGSFFATRQGFISPESFTFIESAIILAIVVLGGMGSQ 423 S+G+N +KL+AF I A G AG FFAT QGF++P SFTF ESA+ILAIVVLGGMGS Sbjct: 309 SMGLNHVLVKLSAFTIGASTAGLAGVFFATYQGFVNPTSFTFFESALILAIVVLGGMGST 368 Query: 424 IGVVVAAFLVIGLPEAFRELADYRMLAFGMGMVLIMLWRPRGLL 467 IGVV+AAF++ PE R A+YR+L FG+ MVL+M+WRPRGL+ Sbjct: 369 IGVVIAAFVLTVAPELLRGFAEYRVLLFGILMVLMMIWRPRGLI 412 Lambda K H 0.329 0.144 0.438 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 691 Number of extensions: 48 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 2 Length of query: 505 Length of database: 427 Length adjustment: 33 Effective length of query: 472 Effective length of database: 394 Effective search space: 185968 Effective search space used: 185968 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory