Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate Pf1N1B4_4931 Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20); Succinate-semialdehyde dehydrogenase [NADP+] (EC 1.2.1.79)
Query= BRENDA::P25526 (482 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_4931 Length = 485 Score = 600 bits (1547), Expect = e-176 Identities = 291/480 (60%), Positives = 367/480 (76%), Gaps = 1/480 (0%) Query: 2 KLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRAL 61 +L D +L + A ++G+W+ A+N +DV +PA+G L VP M +TR AI+AA RA Sbjct: 5 RLKDPSLLAELAYVDGQWIGADNAATLDVIDPASGQLLARVPAMQGAQTRRAIEAAERAW 64 Query: 62 PAWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFAE 121 PAWRA A ERA +L W+ M+++ DDLA +MT EQGKPL EAKGEI Y A F++WFAE Sbjct: 65 PAWRARPAAERAALLERWYQAMIDNLDDLALIMTCEQGKPLNEAKGEIRYGAGFVKWFAE 124 Query: 122 EGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKP 181 E +R+YG+T+P D+RL+ +KQP+GV AAITPWNFP AMITRK PALAAGC +++KP Sbjct: 125 EARRVYGETMPAPSGDRRLLTLKQPVGVCAAITPWNFPNAMITRKCAPALAAGCPIIVKP 184 Query: 182 ASQTPFSALALAELAIRAGVPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQL 241 + TP SALALA LA R G+PAGVFNV+TG +G ELT NP VRK+SFTGST +GR L Sbjct: 185 SDLTPLSALALAVLAERVGIPAGVFNVLTGMPAGIGEELTGNPTVRKISFTGSTAVGRLL 244 Query: 242 MEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDGV 301 M Q A+ IK++SLELGGNAPFIVFDDADL++AV G + SKFRNAGQTCVCANR+ VQDG+ Sbjct: 245 MRQSAEHIKRLSLELGGNAPFIVFDDADLEQAVAGIMLSKFRNAGQTCVCANRILVQDGI 304 Query: 302 YDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKAH 361 Y+RFA++L + V KL +G+GLD VTIGPLI+ AV+K+ HI DAL +GAR++CGG Sbjct: 305 YERFAQRLVEEVGKLKVGNGLDADVTIGPLINPAAVSKIARHIDDALSQGARLLCGG-IP 363 Query: 362 ERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYAR 421 E F QPT+L D A ++ EETFGP+APL RF DEA+ +A AN T +GL AY++ + Sbjct: 364 EGDSQFVQPTVLGDTHAGMLLANEETFGPVAPLMRFTDEAEALALANATPYGLGAYYFTQ 423 Query: 422 DLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCIG 481 DL R +R GEALE+G+VG+NTGIIS EVAPFGGIK SGLGREGSKYG+++YLE+K IG Sbjct: 424 DLRRSWRFGEALEFGMVGLNTGIISMEVAPFGGIKQSGLGREGSKYGLDEYLEVKAFHIG 483 Lambda K H 0.318 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 751 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 485 Length adjustment: 34 Effective length of query: 448 Effective length of database: 451 Effective search space: 202048 Effective search space used: 202048 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory