Align NAD(P)+ L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate Pf1N1B4_2673 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-16244 (495 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_2673 Length = 506 Score = 361 bits (927), Expect = e-104 Identities = 208/483 (43%), Positives = 285/483 (59%), Gaps = 15/483 (3%) Query: 16 TYEQPTGLFINNEFVQSKSKKTFGTVSPSTEEEITQVYEAFSEDIDDAVEAATAAFHSSW 75 +++ G +I EFV + F SP + I + + +EDI+ A++AA AA +W Sbjct: 14 SFKSKYGNYIGGEFVAPVKGQYFTNTSPVNGQPIAEFPRSTAEDIEKALDAAHAAA-DAW 72 Query: 76 STSDPQVRMKVLYKLADLIDEHADTLAHIEALDNGKSLMCS-KGDVALTAAYFRSCAGWT 134 + Q R VL K+AD I+++ + LA E+ DNGK++ + D+ L A +FR AG Sbjct: 73 GATSAQARSLVLLKIADRIEQNLELLAITESWDNGKAVRETLNADIPLAADHFRYFAGCI 132 Query: 135 DKIKGSVIETGDTHFNYTRREPIGVCGQIIPWNFPLLMASWKLGPVLCTGCTTVLKTAES 194 +GS E Y EP+GV GQIIPWNFP+LMA+WKL P L G VLK AE Sbjct: 133 RAQEGSAAEIDGNTVAYHIHEPLGVVGQIIPWNFPILMAAWKLAPALAAGNCIVLKPAEQ 192 Query: 195 TPLSALYLASLIKEAGAPPGVVNVVSGFGPTAGAPISSHPKIKKVAFTGSTATGRHIMKA 254 TPL L LI + PPGV+NVV GFG AG +++ +I K+AFTGST G HIMK Sbjct: 193 TPLGITVLMELIGDL-LPPGVLNVVQGFGKEAGEALATSKRIAKIAFTGSTPVGSHIMKC 251 Query: 255 AAESNLKKVTLELGGKSPNIVFDDA--DVKSTIQHLVTGI---FYNTGEVCCAGSRIYVQ 309 AAE N+ T+ELGGKSPNI F+D S I+ G+ F+N GEVC SR VQ Sbjct: 252 AAE-NIIPSTVELGGKSPNIFFEDIMKAEPSFIEKAAEGLVLAFFNQGEVCTCPSRALVQ 310 Query: 310 EGIYDKIVSEFKNAAESLKIGDPFKEDTFMGAQTSQLQLDKILKYIDIGKKEGATVITGG 369 E IYD+ + N +K GDP DT +GAQ S+ Q DKIL Y++I K EGA ++TGG Sbjct: 311 ESIYDEFMKVVMNKVLQIKRGDPLDTDTMVGAQASEQQFDKILSYLEIAKGEGAELLTGG 370 Query: 370 -----ERFGNKGYFIKPTIFGDVKEDHQIVRDEIFGPVVTITKFKTVEEVIALANDSEYG 424 E GY+I+PT+ + ++ ++EIFGPVV+IT FK E +A+AND+E+G Sbjct: 371 KVEKLEGSLATGYYIQPTLLKGTNK-MRVFQEEIFGPVVSITTFKDEAEALAIANDTEFG 429 Query: 425 LAAGVHTTNLSTAISVSNKINSGTIWVNTYNDFHPMVPFGGYSQSGIGREMGEEALDNYT 484 L AG+ T +++ A + I +G +W N Y+ + FGGY +SG+GRE + LD+Y Sbjct: 430 LGAGLWTRDINRAYRMGRAIKAGRVWTNCYHLYPAHAAFGGYKKSGVGRETHKMMLDHYQ 489 Query: 485 QVK 487 Q K Sbjct: 490 QTK 492 Lambda K H 0.316 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 633 Number of extensions: 28 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 506 Length adjustment: 34 Effective length of query: 461 Effective length of database: 472 Effective search space: 217592 Effective search space used: 217592 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory