Align 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate Pf1N1B4_1109 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26)
Query= reanno::pseudo1_N1B4:Pf1N1B4_1109 (481 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_1109 Length = 481 Score = 949 bits (2454), Expect = 0.0 Identities = 481/481 (100%), Positives = 481/481 (100%) Query: 1 VADAKRYDNYINGEWVSGADYSANINPSELTDTIGDYAKADLAQVHAAIDAARAAFPAWS 60 VADAKRYDNYINGEWVSGADYSANINPSELTDTIGDYAKADLAQVHAAIDAARAAFPAWS Sbjct: 1 VADAKRYDNYINGEWVSGADYSANINPSELTDTIGDYAKADLAQVHAAIDAARAAFPAWS 60 Query: 61 TSGIQARHDSLDKVGTEILARREELGTLLAREEGKTLPEAIGEVTRAGNIFKFFAGECLR 120 TSGIQARHDSLDKVGTEILARREELGTLLAREEGKTLPEAIGEVTRAGNIFKFFAGECLR Sbjct: 61 TSGIQARHDSLDKVGTEILARREELGTLLAREEGKTLPEAIGEVTRAGNIFKFFAGECLR 120 Query: 121 LSGDYLPSVRPGVNVEVTREALGVVGLITPWNFPIAIPAWKIAPALAYGNCVVLKPADLV 180 LSGDYLPSVRPGVNVEVTREALGVVGLITPWNFPIAIPAWKIAPALAYGNCVVLKPADLV Sbjct: 121 LSGDYLPSVRPGVNVEVTREALGVVGLITPWNFPIAIPAWKIAPALAYGNCVVLKPADLV 180 Query: 181 PGCAWALAEIISRAGFPAGVFNLVMGSGRVVGDALVQSPKVDGISFTGSVGVGRQIAVSC 240 PGCAWALAEIISRAGFPAGVFNLVMGSGRVVGDALVQSPKVDGISFTGSVGVGRQIAVSC Sbjct: 181 PGCAWALAEIISRAGFPAGVFNLVMGSGRVVGDALVQSPKVDGISFTGSVGVGRQIAVSC 240 Query: 241 VSRQAKVQLEMGGKNPQIILDDADLKQAVELSVQSAFYSTGQRCTASSRFIVTAGIHDKF 300 VSRQAKVQLEMGGKNPQIILDDADLKQAVELSVQSAFYSTGQRCTASSRFIVTAGIHDKF Sbjct: 241 VSRQAKVQLEMGGKNPQIILDDADLKQAVELSVQSAFYSTGQRCTASSRFIVTAGIHDKF 300 Query: 301 VEAMAERMKSIKVGHALKTGTDIGPVVSQAQLEQDLKYIDIGQSEGARLVSGGGLVACDT 360 VEAMAERMKSIKVGHALKTGTDIGPVVSQAQLEQDLKYIDIGQSEGARLVSGGGLVACDT Sbjct: 301 VEAMAERMKSIKVGHALKTGTDIGPVVSQAQLEQDLKYIDIGQSEGARLVSGGGLVACDT 360 Query: 361 EGYFLAPTLFADSTAAMRISREEIFGPVANIVRVADYEAALAMANDTEFGLSAGIATTSL 420 EGYFLAPTLFADSTAAMRISREEIFGPVANIVRVADYEAALAMANDTEFGLSAGIATTSL Sbjct: 361 EGYFLAPTLFADSTAAMRISREEIFGPVANIVRVADYEAALAMANDTEFGLSAGIATTSL 420 Query: 421 KYANHFKRHSQAGMVMVNLPTAGVDYHVPFGGRKGSSYGSREQGRYAQEFYTVVKTSYIG 480 KYANHFKRHSQAGMVMVNLPTAGVDYHVPFGGRKGSSYGSREQGRYAQEFYTVVKTSYIG Sbjct: 421 KYANHFKRHSQAGMVMVNLPTAGVDYHVPFGGRKGSSYGSREQGRYAQEFYTVVKTSYIG 480 Query: 481 S 481 S Sbjct: 481 S 481 Lambda K H 0.318 0.134 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 888 Number of extensions: 13 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 481 Length adjustment: 34 Effective length of query: 447 Effective length of database: 447 Effective search space: 199809 Effective search space used: 199809 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory