Align Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate Pf1N1B4_5978 Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26)
Query= reanno::pseudo6_N2E2:Pf6N2E2_612 (526 letters) >lcl|FitnessBrowser__pseudo1_N1B4:Pf1N1B4_5978 Ketoglutarate semialdehyde dehydrogenase (EC 1.2.1.26) Length = 526 Score = 823 bits (2127), Expect = 0.0 Identities = 417/524 (79%), Positives = 460/524 (87%) Query: 1 MNQILGHNYIGGARSAAGQTRLQSVDASTGEALPHDFIQATAEEVDAAAKAAAAAYPAYR 60 M +I+GHNYIGGARSAAG +QS DASTGEALP F+QATAEEVDAAA+AAAAAYPA+R Sbjct: 1 MPEIIGHNYIGGARSAAGNIAMQSHDASTGEALPFSFMQATAEEVDAAAQAAAAAYPAFR 60 Query: 61 SLSAVRRAEFLEAIADELDALGDEFVAVVCRETALPAARIQGERGRTSGQMRLFAKVLRR 120 +L A RRAEFLEAIA +LDAL DEFVA+V RETALP RIQGER RTSGQMRLFA+VLRR Sbjct: 61 NLPATRRAEFLEAIATQLDALDDEFVALVTRETALPTGRIQGERNRTSGQMRLFAQVLRR 120 Query: 121 GDFYGARIDRALPERTPLPRPDLRQYRIGLGPVAVFGASNFPLAFSTAGGDTASALAAGC 180 GDFYGARIDRALPER PLPR DLRQYRIG+GPVAVFGASNFPLAFSTAGGDTA+ALAAGC Sbjct: 121 GDFYGARIDRALPERLPLPRVDLRQYRIGVGPVAVFGASNFPLAFSTAGGDTAAALAAGC 180 Query: 181 PVVFKAHSGHMATAEHVADAIIRAAEKTLMPAGVFNMIYGGGVGEWLVKHPAIQAVGFTG 240 PVVFKAHSGHMATAEHVADAIIRAAE+T MP GVFNMIYG GVGE LVKHPAIQAVGFTG Sbjct: 181 PVVFKAHSGHMATAEHVADAIIRAAEQTDMPKGVFNMIYGAGVGEALVKHPAIQAVGFTG 240 Query: 241 SLKGGRALCDMAAARPQPIPVFAEMSSINPVIVLPQALETRAESVARDLTASVVQGCGQF 300 SLKGGRALCDMAAARPQPIPVFAEMSSINPV+VLP+AL R E +A +L ASVVQGCGQF Sbjct: 241 SLKGGRALCDMAAARPQPIPVFAEMSSINPVLVLPEALLARGEKIAGELVASVVQGCGQF 300 Query: 301 CTNPGLVIGIRSPQFTAFTQQVAALIGDQAPQTMLNAGTLQSYGKGLQKLLAHPGIEHLA 360 CTNPGLVIG+RSP F+AF +++AL+ +Q QTMLNAGTL SY KG+Q LL HP I LA Sbjct: 301 CTNPGLVIGMRSPHFSAFIARLSALMTEQPAQTMLNAGTLGSYEKGVQALLDHPRIIRLA 360 Query: 361 GRQQQGNQAQPQLFKADASLLINGDEALQEEVFGPTTVFVEVADQAQLTAALNGLHGQLT 420 G+ + GNQAQPQLFKAD SLL+ GD LQEEVFGPTT+ VEVAD+A+L ALN LHGQLT Sbjct: 361 GQDRHGNQAQPQLFKADVSLLLKGDPLLQEEVFGPTTLVVEVADKAELRQALNSLHGQLT 420 Query: 421 ATMIGEPADFERFSELTPLLEQKVGRILLNGYPTGVEVCDSMVHGGPYPATSDARGTSVG 480 AT+IGE D + ++L LLEQKVGR+L NGYPTGVEVCD+MVHGGPYPATSDARGTSVG Sbjct: 421 ATLIGEAQDLKEHADLLVLLEQKVGRVLFNGYPTGVEVCDAMVHGGPYPATSDARGTSVG 480 Query: 481 TLAIDRFLRPVCFQNYPDSLLPEPLKNANPLGILRLVDGVPGRE 524 +LAI+RFLRPVC+QN PD+LLP+ LKNANPLGI RL+DG RE Sbjct: 481 SLAIERFLRPVCYQNCPDALLPDALKNANPLGIARLIDGNSHRE 524 Lambda K H 0.319 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 917 Number of extensions: 33 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 526 Length of database: 526 Length adjustment: 35 Effective length of query: 491 Effective length of database: 491 Effective search space: 241081 Effective search space used: 241081 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory