GapMind for catabolism of small carbon sources

 

Alignments for a candidate for glucosaminate-lyase in Pseudomonas fluorescens FW300-N1B4

Align D-glucosaminate dehydratase (EC 4.3.1.9) (characterized)
to candidate Pf1N1B4_5639 D-serine deaminase (EC 4.3.1.18)

Query= reanno::pseudo13_GW456_L13:PfGW456L13_2867
         (405 letters)



>FitnessBrowser__pseudo1_N1B4:Pf1N1B4_5639
          Length = 405

 Score =  761 bits (1966), Expect = 0.0
 Identities = 380/405 (93%), Positives = 389/405 (96%)

Query: 1   MSSAPNTAAVEKGTAPKGASLVRDVSLPALVLHREALEHNIRWMQAFVSDSGAELAPHGK 60
           M SA NTAAVEKG A  GA+LVRDVSLPALVLHR+ALEHNIRWMQ FVS+SGAELAPHGK
Sbjct: 1   MYSAKNTAAVEKGFAHTGANLVRDVSLPALVLHRDALEHNIRWMQDFVSNSGAELAPHGK 60

Query: 61  TSMTPALFRRQLDAGAWGITLASATQTRAAYAHGVRRVLMANQLVGTPNMALIADLLADP 120
           TSMTPALFRRQLDAGAWGITLASATQTRAAYAHGV RVLMANQLVGTPNMALIADLLADP
Sbjct: 61  TSMTPALFRRQLDAGAWGITLASATQTRAAYAHGVHRVLMANQLVGTPNMALIADLLADP 120

Query: 121 TFDFYCMVDHPDNVADLGAYFASRGVRLNVMIEYGVVGGRCGCRSEQQVLDLAKAIAAQP 180
           TFDFYCMVDHPDNVADLGAYFASRGVRLNVMIEYGVVGGRCGCR+E +VL LAKAIAAQP
Sbjct: 121 TFDFYCMVDHPDNVADLGAYFASRGVRLNVMIEYGVVGGRCGCRTETEVLALAKAIAAQP 180

Query: 181 ALALTGIEGYEGVIHGDHAVTGIRDFAASLVRLAVQLQDSGAFAIPKPIITASGSAWYDL 240
           ALALTGIEGYEGVIHGDHAV+GIR FA SLVRLAVQLQDSGAFAI KPIITASGSAWYDL
Sbjct: 181 ALALTGIEGYEGVIHGDHAVSGIRAFADSLVRLAVQLQDSGAFAIAKPIITASGSAWYDL 240

Query: 241 IAESFEAQNAAGRFLSVLRPGSYVAHDHGIYKEAQCCVLDRRSDLHEGLRPALEVWAHVQ 300
           IAESFEAQNA GRFLSVLRPGSYVAHDHGIYKEAQCCVLDRRSDLHEGLRPALEVWAHVQ
Sbjct: 241 IAESFEAQNACGRFLSVLRPGSYVAHDHGIYKEAQCCVLDRRSDLHEGLRPALEVWAHVQ 300

Query: 301 SLPEPGFAVIALGKRDVAYDAGLPVPLLRYKAGVVPAEGDDVSVCKVTAVMDQHAFMTVA 360
           SLPEPGFAVIALGKRDVAYDAGLPVPLLRYKAGVVPA G+DV  CKVTAVMDQHAFMTVA
Sbjct: 301 SLPEPGFAVIALGKRDVAYDAGLPVPLLRYKAGVVPAIGEDVGACKVTAVMDQHAFMTVA 360

Query: 361 PGVDLRVGDIISFGTSHPCLTFDKWRVGCLVDEQLNVIETMETCF 405
           PGV+LRVGDIISFGTSHPCLTFDKWR+GCLVDEQLNVIETMETCF
Sbjct: 361 PGVELRVGDIISFGTSHPCLTFDKWRIGCLVDEQLNVIETMETCF 405


Lambda     K      H
   0.322    0.136    0.413 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 726
Number of extensions: 18
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 405
Length of database: 405
Length adjustment: 31
Effective length of query: 374
Effective length of database: 374
Effective search space:   139876
Effective search space used:   139876
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory