Align α-glucosidase (EC 3.2.1.20) (characterized)
to candidate Pf1N1B4_835 Trehalose-6-phosphate hydrolase (EC 3.2.1.93)
Query= CAZy::AAF71997.1 (562 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_835 Length = 549 Score = 693 bits (1789), Expect = 0.0 Identities = 319/555 (57%), Positives = 412/555 (74%), Gaps = 11/555 (1%) Query: 6 WKKAVVYQIYPKSFNDTNGDGIGDLAGIIEKLDYLKQLGVDVIKLKPIYKSPQRDNGYDI 65 W+++V+YQIYPKSF+ G+ GDL G++ KLDYL LGVD + + P +SPQRDNGYDI Sbjct: 4 WQRSVIYQIYPKSFHSHAGNPTGDLLGVVAKLDYLHWLGVDCLWITPFLRSPQRDNGYDI 63 Query: 66 SDYFQIHDEYGTMEDFDRLLEEVHRRGMKLIMDMVVNHTSTEHEWFKQARTSKDNPYRHF 125 SDY+ I YGTM D + L+ E +RG+KL++D+VVNHTS EH WF+QAR+S DNPYR F Sbjct: 64 SDYYAIDPSYGTMADCELLIAEAGKRGIKLMLDIVVNHTSIEHTWFQQARSSLDNPYRDF 123 Query: 126 YIWRDPKPDGSAPTNWQSKFGGSAWEYDEKTGQYYLHLFDVTQADLNWENEELRRRIYDM 185 YIWRD P NW+SKFGGSAWEY+ +TGQYYLHLFD TQADLNW+N ++R ++ M Sbjct: 124 YIWRDQ------PNNWESKFGGSAWEYEAQTGQYYLHLFDHTQADLNWDNPQVRAEVFKM 177 Query: 186 MHFWFQKGVDGFRLDVVNLLSKDQRFLDDDGSMPPGDGRKFYTDGPRIHEFLHEMNREVF 245 M FW KGV GFRLDV+NL+SK F +D+ DGR+FYTDGP +HE+L +M+REVF Sbjct: 178 MRFWRDKGVGGFRLDVINLISKPADFPEDNS-----DGRRFYTDGPNVHEYLQQMHREVF 232 Query: 246 SKYDVMTVGEMSSTTIDHCIKYTNPERRELNMVFNFHHLKVDYPNGEKWAVADFDFLALK 305 +D++ VGEMSST+++HCI+Y+ PE +EL+M FNFHHLKVDYPN +KW ADFDFLALK Sbjct: 233 EGHDLINVGEMSSTSLEHCIRYSRPESKELSMTFNFHHLKVDYPNLQKWVRADFDFLALK 292 Query: 306 RILSEWQVEMHKGGGWNALFWCNHDQPRIVSRYGDDGKYHKESAKMLATVIHMMQGTPYI 365 RILS+WQ M GGGWNALFWCNHDQPR+VSR+G DG++ SAKML T +H +QGTP++ Sbjct: 293 RILSDWQTGMQAGGGWNALFWCNHDQPRVVSRFGHDGEHRVVSAKMLGTALHFLQGTPFV 352 Query: 366 YQGEEIGMTDPKFERIDDYRDVESLNMYHILREQGKSEQEVLEILKRKSRDNSRTPMQWD 425 YQGEE+GMT+P F+ ID YRDVE+LN++ + RE G S+ + + + +KSRDN RTPM W+ Sbjct: 353 YQGEELGMTNPGFDHIDQYRDVETLNIFRLKREAGSSDVDNMAAIMQKSRDNGRTPMHWN 412 Query: 426 DSENAGFTTGKPWIRVAPNYQQINVKKALEDPTSVFYHYQRLIQLRKQYDIITTGDYQLL 485 NAGF+ +PWI V N QINV L+DP SV +HY++LI LR+ +++ G Y+ L Sbjct: 413 TEPNAGFSAVEPWIGVPANAAQINVAHQLDDPDSVLHHYRQLIALRRSETLMSDGVYRQL 472 Query: 486 LEDHPDIFAYLRNGENEKLLVVNNFYGRETTFILPDDVDVNGYASEILISNYDDSPSDFR 545 L +H I+AY+R G+ E+LLV+NNFYG LP +V ++ISNY D P R Sbjct: 473 LPEHTQIWAYVREGQGERLLVLNNFYGTPCEVELPPEVINESMVQSLVISNYPDCPPRNR 532 Query: 546 KITLRPYESIVYYLT 560 ++ LRPYES V LT Sbjct: 533 QVFLRPYESFVLRLT 547 Lambda K H 0.320 0.138 0.433 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1188 Number of extensions: 56 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 562 Length of database: 549 Length adjustment: 36 Effective length of query: 526 Effective length of database: 513 Effective search space: 269838 Effective search space used: 269838 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory