Align Inositol transport system ATP-binding protein (characterized)
to candidate Pf1N1B4_4286 Inositol transport system ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_4286 Length = 526 Score = 169 bits (429), Expect = 8e-47 Identities = 88/247 (35%), Positives = 150/247 (60%), Gaps = 5/247 (2%) Query: 7 LIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILF 66 L+ + + K F V+AL+ V + V PG L+G+NGAGKST +K ++G+++P G++ Sbjct: 32 LLEIINVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPDAGELRL 91 Query: 67 EGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANR 126 G+P+ F P A+ AGIA +HQ L ++P MS++ N ++G E ++ L + DH +R Sbjct: 92 RGKPVVFETPLAALQAGIAMIHQELNLMPHMSIAENIWIGRE---QLNGLHMIDHREMHR 148 Query: 127 ITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTAN 186 T + + ++ INL P++ VG LS ERQ V IA+AV + + +LI+DEPTSA+ ++ A+ Sbjct: 149 CTAKLLERLRINL-DPEELVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITDKEVAH 207 Query: 187 VLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 + + I +++QG +++ITH + ++ D V G +G + + + L MM Sbjct: 208 LFSIIADLKRQGKGIIYITHKMNEVFSIADEVAVFRDGAYIGLQRADSMDGDSLISMMV- 266 Query: 247 GQELATL 253 G+EL+ L Sbjct: 267 GRELSQL 273 Score = 97.4 bits (241), Expect = 5e-25 Identities = 64/225 (28%), Positives = 110/225 (48%), Gaps = 7/225 (3%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILFEGQPLHFADPRDAIAAGIA 85 VS D+ GE + G G+G++ + + G+ G+I +G+ + +DP AI G A Sbjct: 300 VSFDLHAGEILGIAGLMGSGRTNVAEAIFGITPSDGGEIRLDGEVVRISDPHMAIEKGFA 359 Query: 86 TVHQHL---AMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEM-RKMGINLRG 141 + + + P +SV N M P +G F A R E+M +K+ + Sbjct: 360 LLTEDRKLSGLFPCLSVLENMEMAVLP-HYVG--NGFIQQKALRALCEDMCKKLRVKTPS 416 Query: 142 PDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVAV 201 +Q + TLSGG +Q +AR + ++LILDEPT + V A + I + +G+AV Sbjct: 417 LEQCIDTLSGGNQQKALLARWLMTNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAV 476 Query: 202 VFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDMMAG 246 + I+ + L + DR V++ G +GT R + + E + + +G Sbjct: 477 IMISSELPEVLGMSDRVMVMHEGDLMGTLDRSEATQERVMQLASG 521 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 307 Number of extensions: 22 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 526 Length adjustment: 30 Effective length of query: 231 Effective length of database: 496 Effective search space: 114576 Effective search space used: 114576 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory