Align D-mannonate oxidoreductase; EC 1.1.1.57; Fructuronate reductase (uncharacterized)
to candidate Pf1N1B4_4846 Multiple polyol-specific dehydrogenase (EC 1.1.1.-)
Query= curated2:P39160 (486 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_4846 Length = 491 Score = 343 bits (881), Expect = 6e-99 Identities = 189/470 (40%), Positives = 271/470 (57%), Gaps = 6/470 (1%) Query: 11 VARPSWDHSRLESRIVHLGCGAFHRAHQALYTHHLLESTDS-DWGICEVNLMPGNDRVLI 69 VA P++ S I H+G G FHRAHQA YT L+ + ++ DW IC V L DR Sbjct: 15 VALPAYTLSDTRQGIAHIGVGGFHRAHQAYYTDALMNTGEALDWAICGVGLR-AEDRRAR 73 Query: 70 ENLKKQQLLYTVAEKG-AESTELKIIGSMKEALHPEIDGCEGILNAMARPQTAIVSLTVT 128 ++LK+Q L+T+ E G A+ E+++IG++++ L E D E +++ +A P IVSLT+T Sbjct: 74 DDLKEQDYLFTLFELGDADDAEVRVIGAIRDMLLAE-DSPEVLIDKLADPDIRIVSLTIT 132 Query: 129 EKGYCADAASGQLDLNNPLIKHDLENPTAPKSAIGYIVEALRLRREKGLKAFTVMSCDNV 188 E GYC D ++G+ + P I+HDL +P APK+ G++ AL RR G AFT+MSCDN+ Sbjct: 133 EGGYCIDDSNGEFMAHLPQIQHDLAHPNAPKTVFGFLCAALAKRRAAGTPAFTLMSCDNL 192 Query: 189 RENGHVAKVAVLGLAQARDPQLAAWIEENVTFPCTMVDRIVPAATPETLQEIADQLGVYD 248 NG V + A+L A RD L WIE +V+FP MVDRI P + E ++ D+ + D Sbjct: 193 PHNGAVTRKALLAFAALRDADLRDWIERHVSFPNAMVDRITPMTSTEHRLQLHDKHSIDD 252 Query: 249 PCAIACEPFRQWVIEDNFVNGRPDWDKVGAQFVADVVPFEMMKLRMLNGSHSFLAYLGYL 308 + CEPF QWV+ED FVNGRP W+KVG QF DV P+E MK+++LNGSH L YLG+L Sbjct: 253 AWPVVCEPFVQWVLEDKFVNGRPAWEKVGVQFTDDVTPYEEMKIKLLNGSHLALTYLGFL 312 Query: 309 GGYETIADTVTNPAYRKAAFALMMQEQAPTLSMPEGTDLNAYATLLIERFSNPSLRHRTW 368 GY + +T+ +P + + A M + P L+ G DL Y L+ RFSN ++ + Sbjct: 313 KGYRFVHETMNDPLFVRYMRAYMDLDVTPQLAPVPGIDLTEYKNTLVARFSNQAIADQLE 372 Query: 369 QIAMDGSQKLPQRLLDPVRLHLQNGGSWRHLALGVAGWMRYTQGVDEQGNAIDVVDPMLA 428 ++ DGS K P+ + + + +G + AL VA W Y +GVDE G + DP A Sbjct: 373 RVCSDGSSKFPKFTVPTINCLIADGQETKRAALVVAAWALYLKGVDENGQTYAIPDPRAA 432 Query: 429 EFQKINAQYQGADRVKALLGLSGIFADDLPQNADFVGAVTAAYQQLCERG 478 Q + A + LL + IF +P++ +FV A L E G Sbjct: 433 FCQALVA--DDVLITQRLLEVEEIFGTAIPRSPEFVAAFEWCCNSLREVG 480 Lambda K H 0.320 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 641 Number of extensions: 32 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 491 Length adjustment: 34 Effective length of query: 452 Effective length of database: 457 Effective search space: 206564 Effective search space used: 206564 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory