Align Aromatic amino acid:H+ symporter, AroP of 457 aas and 12 TMSs (Cosgriff and Pittard 1997). Transports phenylalanine, tyrosine and tryptophan (characterized)
to candidate Pf1N1B4_3559 Aromatic amino acid transport protein AroP
Query= TCDB::P15993 (457 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3559 Length = 473 Score = 611 bits (1575), Expect = e-179 Identities = 305/458 (66%), Positives = 358/458 (78%), Gaps = 10/458 (2%) Query: 2 MEGQQ-HGEQLKRGLKNRHIQLIALGGAIGTGLFLGSASVIQSAGPGIILGYAIAGFIAF 60 M GQ H +LKRGLKNRHIQLIALGGAIGTGLFLGSA V++SAGP +ILGYAI GFIAF Sbjct: 1 MSGQNSHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAICGFIAF 60 Query: 61 LIMRQLGEMVVEEPVAGSFSHFAYKYWGSFAGFASGWNYWVLYVLVAMAELTAVGKYIQF 120 +IMRQLGEM+VEEPVAGSFSHFA+KYWG FAGF SGWN W+LY+LV M+ELTAVGKYI + Sbjct: 61 MIMRQLGEMIVEEPVAGSFSHFAHKYWGGFAGFLSGWNCWILYILVGMSELTAVGKYIHY 120 Query: 121 WYPEIPTWVSAAVFFVVINAINLTNVKVFGEMEFWFAIIKVIAVVAMIIFGGWLLFSGNG 180 W P+IPTWVSAA FFV+IN INL NVKVFGE EFWFAIIKV+A+V MI G +LL SG+G Sbjct: 121 WAPDIPTWVSAAGFFVLINLINLANVKVFGEAEFWFAIIKVVAIVGMIALGSYLLVSGDG 180 Query: 181 GPQATVSNLWDQGGFLPHGFTGLVMMMAIIMFSFGGLELVGITAAEADNPEQSIPKATNQ 240 GPQA+V+NLW+ GGF P+G +GLVM MAIIMFSFGGLE++G TAAEAD P+ IPKA NQ Sbjct: 181 GPQASVTNLWEHGGFFPNGVSGLVMAMAIIMFSFGGLEMLGFTAAEADKPKTVIPKAINQ 240 Query: 241 VIYRILIFYIGSLAVLLSLMPWTRVTA---------DTSPFVLIFHELGDTFVANALNIV 291 VIYRILIFYIG+L VLLSL PW + SPFV +F LG A+ LN V Sbjct: 241 VIYRILIFYIGALVVLLSLTPWDSLLTTLNASGDAYSGSPFVQVFSMLGSDTAAHILNFV 300 Query: 292 VLTAALSVYNSCVYCNSRMLFGLAQQGNAPKALASVDKRGVPVNTILVSALVTALCVLIN 351 VLTAALSVYNS YCNSRML G+A+QG+APKAL+ +DKRGVPV +IL SA VT + VL+N Sbjct: 301 VLTAALSVYNSGTYCNSRMLLGMAEQGDAPKALSKIDKRGVPVRSILASAAVTLVAVLLN 360 Query: 352 YLAPESAFGLLMALVVSALVINWAMISLAHMKFRRAKQEQGVVTRFPALLYPLGNWICLL 411 YL P+ A LLM+LVV+ LVINWAMIS +H KFR+ + F AL YP GN++CL Sbjct: 361 YLVPQHALELLMSLVVATLVINWAMISFSHFKFRQHMNKTKQTPLFKALWYPYGNYVCLA 420 Query: 412 FMAAVLVIMLMTPGMAISVYLIPVWLIVLGIGYLFKEK 449 F+ +L +ML+ PG+ ISVY IPVW+ + + Y K K Sbjct: 421 FVVFILGVMLLIPGIQISVYAIPVWVAFMWVCYGIKNK 458 Lambda K H 0.328 0.141 0.434 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 702 Number of extensions: 28 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 457 Length of database: 473 Length adjustment: 33 Effective length of query: 424 Effective length of database: 440 Effective search space: 186560 Effective search space used: 186560 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory