GapMind for catabolism of small carbon sources

 

Aligments for a candidate for livJ in Pseudomonas fluorescens FW300-N1B4

Align Leucine ABC transporter subunit substrate-binding protein LivK (characterized, see rationale)
to candidate Pf1N1B4_3218 High-affinity leucine-specific transport system, periplasmic binding protein LivK (TC 3.A.1.4.1)

Query= uniprot:A0A160A0J6
         (375 letters)



>lcl|FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3218 High-affinity
           leucine-specific transport system, periplasmic binding
           protein LivK (TC 3.A.1.4.1)
          Length = 375

 Score =  703 bits (1815), Expect = 0.0
 Identities = 351/375 (93%), Positives = 363/375 (96%)

Query: 1   MTKATKQISKLFAAMVLAGVASHSFAADTIKIGIAGPKTGPVAQYGDMQFSGSKMAIEQI 60
           MTKATKQISKLFAAMVLAGVASHSFAADTIKIGIAGPKTGPVAQYGDMQFSGSKMAIEQI
Sbjct: 1   MTKATKQISKLFAAMVLAGVASHSFAADTIKIGIAGPKTGPVAQYGDMQFSGSKMAIEQI 60

Query: 61  NAKGGVNGKQLVAVEYDDACDPKQAVAVANKVVNDGIKFVVGHLCSSSTQPASDIYEDEG 120
           NAKGGV+GK+L AVEYDDACDPKQAVAVANKVVNDG+KFVVGHLCSSSTQPASDIYEDEG
Sbjct: 61  NAKGGVDGKKLEAVEYDDACDPKQAVAVANKVVNDGVKFVVGHLCSSSTQPASDIYEDEG 120

Query: 121 VVMITPAATSPDITARGYKMIFRTIGLDSAQGPAAGNYIADHVKPKIVAVLHDKQQYGEG 180
           V+MITPAATSPDIT RGYKMIFRTIGLDSAQGPAAGNYIADHVKPKIVAVLHDKQQYGEG
Sbjct: 121 VIMITPAATSPDITTRGYKMIFRTIGLDSAQGPAAGNYIADHVKPKIVAVLHDKQQYGEG 180

Query: 181 IASAVKKTLEDKGVKVAVFEGVNAGDKDFSSMIAKLKQANVDFVYYGGYHPELGLILRQS 240
           IASAVK TLE KGVKVAVFEG+NAGDKDFSSM++KLKQANVDFVYYGGYHPELGL+LRQS
Sbjct: 181 IASAVKTTLEKKGVKVAVFEGINAGDKDFSSMVSKLKQANVDFVYYGGYHPELGLLLRQS 240

Query: 241 QEKGLKAKFMGPEGVGNDSISQIAKESSEGLLVTLPKSFDQDPANIALADAFKAKKEDPS 300
           QEKGLKAKFMGPEGVGNDSISQIAKE+SEGLLVTLPKSFDQDPANIALADAFKAKKEDPS
Sbjct: 241 QEKGLKAKFMGPEGVGNDSISQIAKEASEGLLVTLPKSFDQDPANIALADAFKAKKEDPS 300

Query: 301 GPFVFPSYSAVTVIADAIKAAKSEDAGKVAEAIHAGTFKTPTGDLSFDKNGDLKDFKFVV 360
           GPFVFPSYSAV VI + IKAAKSED  KVAEAIH GTFKTPTGDLSFD+ GDLKDFKFVV
Sbjct: 301 GPFVFPSYSAVQVIVEGIKAAKSEDTTKVAEAIHKGTFKTPTGDLSFDEKGDLKDFKFVV 360

Query: 361 YEWHFGKPKTEASPQ 375
           Y+WHFGKPKTE SPQ
Sbjct: 361 YQWHFGKPKTEVSPQ 375


Lambda     K      H
   0.314    0.132    0.372 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 691
Number of extensions: 28
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 375
Length of database: 375
Length adjustment: 30
Effective length of query: 345
Effective length of database: 345
Effective search space:   119025
Effective search space used:   119025
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer. Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory