Align 3-oxoadipyl-CoA/3-oxo-5,6-dehydrosuberyl-CoA thiolase; EC 2.3.1.174; EC 2.3.1.223 (characterized)
to candidate Pf1N1B4_3904 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9)
Query= SwissProt::P0C7L2 (401 letters) >lcl|FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3904 3-ketoacyl-CoA thiolase (EC 2.3.1.16) @ Acetyl-CoA acetyltransferase (EC 2.3.1.9) Length = 383 Score = 298 bits (764), Expect = 1e-85 Identities = 174/401 (43%), Positives = 243/401 (60%), Gaps = 24/401 (5%) Query: 6 ICDGIRTPIGRY-GGALSSVRADDLAAIPLRELLVRNPRLDAECIDDVILGCANQAGEDN 64 I D RTP+GR GG + RA+D++A + +LL RN ++D ++DVI GC NQ E Sbjct: 2 IVDFGRTPMGRSKGGMHRNTRAEDMSAHLISKLLERNVKVDPSEVEDVIWGCVNQTLEQG 61 Query: 65 RNVARMATLLAGLPQSVSGTTINRLCGSGLDALGFAARAIKAGDGDLLIAGGVESMSRAP 124 N+ARMA+L+ +P + +G T++RLCGS + AL AA+AI G+GD+ + GGVE M Sbjct: 62 WNIARMASLMTQIPHTAAGQTVSRLCGSSMSALHTAAQAIMTGNGDVFVVGGVEHMGHVS 121 Query: 125 FVMGKAASAFSRQAEMFDTTIGWRFVNPLMAQQFGTDS--MPETAENVAELLKISREDQD 182 + G NP M+ S M TAE + ++ I+RE QD Sbjct: 122 MMHGVDP-------------------NPHMSLYAAKASGMMGLTAEMLGKMHGITREQQD 162 Query: 183 SFALRSQQRTAKAQSSGILAEEIVPVVLKNKKGVVTEIQHDEHLRPETTLEQLRGLKAPF 242 +F +RS Q KA G +EI+P+ ++ G + +DE +RPETTLE L LK F Sbjct: 163 AFGVRSHQLAHKATLEGKFKDEIIPMQGYDENGFLKLFDYDETIRPETTLESLAALKPAF 222 Query: 243 RANG-VITAGNASGVNDGAAALIIASEQMAAAQGLTPRARIVAMATAGVEPRLMGLGPVP 301 G +TAG +S + DGA+ +I+ S Q A G+ P A I +MA AGV+P +MG GPVP Sbjct: 223 NPKGGTVTAGTSSQITDGASCMIVMSAQRAQDLGIQPMAVIRSMAVAGVDPAIMGYGPVP 282 Query: 302 ATRRVLERAGLSIHDMDVIELNEAFAAQALGVLRELGLPDDA-PHVNPNGGAIALGHPLG 360 AT++ L+RAGL I+D+D ELNEAFAAQAL VL++L + D VN +GGAIALGHP G Sbjct: 283 ATQKALKRAGLGINDIDFFELNEAFAAQALPVLKDLKVLDKMNEKVNLHGGAIALGHPFG 342 Query: 361 MSGARLALAASHELHRRNGRYALCTMCIGVGQGIAMILERV 401 SGAR++ + + + G + + TMCIG+GQGI+ + ERV Sbjct: 343 CSGARISGTLLNVMKQNGGTFGVATMCIGLGQGISTVFERV 383 Lambda K H 0.319 0.135 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 417 Number of extensions: 17 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 401 Length of database: 383 Length adjustment: 31 Effective length of query: 370 Effective length of database: 352 Effective search space: 130240 Effective search space used: 130240 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory