Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88) (characterized)
to candidate Pf1N1B4_2417 Betaine aldehyde dehydrogenase (EC 1.2.1.8)
Query= BRENDA::Q9RW56 (523 letters) >lcl|FitnessBrowser__pseudo1_N1B4:Pf1N1B4_2417 Betaine aldehyde dehydrogenase (EC 1.2.1.8) Length = 490 Score = 228 bits (582), Expect = 3e-64 Identities = 157/491 (31%), Positives = 238/491 (48%), Gaps = 33/491 (6%) Query: 42 LIIDG--QEVDTEGKIQSINPCDTSEVVGTTAKATIGDAENALQGAWKAFESWKKWDMDA 99 L IDG + ++ ++INP + EV+ T +AT D E A+ A K + W Sbjct: 9 LYIDGGYSDASSDATFEAINPAN-GEVLATVQRATKEDVERAVVSAEKGQKIWAAMTAME 67 Query: 100 RARILLKAAAILKRRRLEACALMSIEVGKNYAEAD-VEVAEAIDFLEYYARSAMKYAGFG 158 R+RIL +A IL+ R E AL +++ GK Y+E V++ D LEYYA Sbjct: 68 RSRILRRAVDILRERNDELAALETLDTGKAYSETRYVDIVTGADVLEYYAGLVPA----- 122 Query: 159 SSETTWFEGEENGLMSI--------PLGVGVSISPWNFPCAIFVGMAAAPIVAGNCVVVK 210 EGE+ L + PLG+ I WN+P I + +A + AGN ++ K Sbjct: 123 ------IEGEQIPLRTTSFVYTRREPLGIVAGIGAWNYPIQIALWKSAPALAAGNAMIFK 176 Query: 211 PAEDAGLIAGFMVDILREAGLPAGVLQFLPGVGKEVGEYLTTHAKTRFITFTGSRAVGLH 270 P+E L + +I EAGLPAGV L G G+EVG +LT H + I+FTG G Sbjct: 177 PSEVTSLTTLKLAEIYTEAGLPAGVFNVLTGSGREVGTWLTEHPRIEKISFTGGTDTGKK 236 Query: 271 INEVAAKVQPGQKWIKRVIMELGGKDGLIVDETADIENAITAATQGAFGFNGQKCSAMSR 330 + A+ +K V MELGGK LI+ + AD++ A A F +GQ C+ +R Sbjct: 237 VMASASGSS-----LKDVTMELGGKSPLIIFDDADLDRAADTAMMANFYSSGQVCTNGTR 291 Query: 331 LIVVDSVYDEVVNGFVERAKALKMGTGE-ENANVTAVVNQMSFNKIKGYLELAPSEG-KV 388 + V + VER +++G E EN N +V+ + GY+ EG ++ Sbjct: 292 VFVPSHLKAAFEAKIVERVARIRVGNPEDENTNFGPLVSFAHMESVLGYIAKGKEEGARL 351 Query: 389 LLGGEATGEANGKQGYYIQPTIVGDVDRNSRLAQEEIFGPVVAVLRAKDWQDALDIANST 448 L GG+ + +G ++ PT+ D + +EEIFGPV+++L + ++ + AN T Sbjct: 352 LCGGDRLTDGEFAKGAFVAPTVFTDCTDEMTIVREEIFGPVMSILTYETEEEVIRRANDT 411 Query: 449 EYGLTGGVCSNSRERLEQARAEFEVGNLYFNRKITGAIVGVQPFGGYNMSGTDSKAGGPD 508 E+GL GV + R + + E G + N G P GGY SG + G Sbjct: 412 EFGLAAGVVTKDLNRAHRVIHQLEAGICWIN--AWGESDAKMPVGGYKQSGV-GRENGIS 468 Query: 509 YLSNFMQLKTV 519 L+NF ++K+V Sbjct: 469 SLNNFTRIKSV 479 Lambda K H 0.317 0.134 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 636 Number of extensions: 30 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 490 Length adjustment: 34 Effective length of query: 489 Effective length of database: 456 Effective search space: 222984 Effective search space used: 222984 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory