GapMind for catabolism of small carbon sources

 

Aligments for a candidate for acnD in Pseudomonas fluorescens FW300-N1B4

Align 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming) (EC 4.2.1.117) (characterized)
to candidate Pf1N1B4_3888 Aconitate hydratase (EC 4.2.1.3)

Query= BRENDA::Q8EJW3
         (867 letters)



>FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3888
          Length = 913

 Score =  723 bits (1865), Expect = 0.0
 Identities = 404/901 (44%), Positives = 553/901 (61%), Gaps = 65/901 (7%)

Query: 20  YFDTREAIEAIAPGAYAKLPYTSRVLAENLVRRCEPEMLT-ASLKQII----ESKQELDF 74
           YF   EA +++  G   KLP + +VL ENL+R  + + +T A LK I     E + + + 
Sbjct: 22  YFSLPEAAKSL--GDLDKLPMSLKVLLENLLRWEDEKTVTGADLKAIAAWLKERRSDREI 79

Query: 75  PWFPARVVCHDILGQTALVDLAGLRDAIAAKGGDPAQVNPVVPTQLIVDHSLAVEYGGFD 134
            + PARV+  D  G  A+VDLA +R A+A  GGDP ++NP+ P  L++DHS+ V+     
Sbjct: 80  QYRPARVLMQDFTGVPAVVDLAAMRAAMAKAGGDPQRINPLSPVDLVIDHSVMVDKYA-S 138

Query: 135 KDAFAKNRAIEDRRNEDRFHFINWTQKAFKNIDVIPQGNGIMHQINLERMSPVIHARNG- 193
             AF +N  IE +RN +R+ F+ W Q AF N  V+P G GI HQ+NLE +   +  ++  
Sbjct: 139 ASAFGQNVDIEMQRNHERYAFLRWGQSAFNNFSVVPPGTGICHQVNLEYLGRTVWTKDED 198

Query: 194 ---VAFPDTLVGTDSHTPHVDALGVIAIGVGGLEAESVMLGRASYMRLPDIIGVELTGKP 250
               AFPDTLVGTDSHT  ++ LGV+  GVGG+EAE+ MLG+   M +P++IG +LTGK 
Sbjct: 199 GRTYAFPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPEVIGFKLTGKL 258

Query: 251 QPGITATDIVLALTEFLRAQKVVSSYLEFFGEGAEALTLGDRATISNMTPEFGATAAMFY 310
           + GITATD+VL +T+ LR + VV  ++EF+G+G   L L DRATI+NM PE+GAT   F 
Sbjct: 259 KEGITATDLVLTVTQMLRKKGVVGKFVEFYGDGLADLPLADRATIANMAPEYGATCGFFP 318

Query: 311 IDQQTLDYLTLTGREAEQVKLVETYAKTAGLWSDDLKQAVYPRTLHFDLSSVVRTIAGPS 370
           +D+ TL+YL L+GR  + VKLVE Y+KT GLW    K+ V+  +L  D+ SV  ++AGP 
Sbjct: 319 VDEVTLEYLRLSGRTPQTVKLVEAYSKTQGLWRLPGKEPVFTDSLALDMGSVEASLAGPK 378

Query: 371 NPHARVPTSELA-------------ARGISGEVENEPG---------------------- 395
            P  RV    +A             +    G +E+E G                      
Sbjct: 379 RPQDRVSLPNVAQAFTDFLGLQFKPSSKEEGRLESEGGGGVAVGNADLIGEADYHHEGST 438

Query: 396 -LMPDGAVIIAAITSCTNTSNPRNVIAAGLLARNANAKGLTRKPWVKTSLAPGSKAVQLY 454
             + +GAV+IAAITSCTNTSNP  ++AAGL+A+ A  KGL RKPWVK+SLAPGSK V  Y
Sbjct: 439 YRLKNGAVVIAAITSCTNTSNPSVMMAAGLVAKKAVEKGLKRKPWVKSSLAPGSKVVTDY 498

Query: 455 LEEANLLPELESLGFGIVGFACTTCNGMSGALDPVIQQEVIDRDLYATAVLSGNRNFDGR 514
            + A L   L+ LGF +VG+ CTTC G SG L   I++ +   DL   +VLSGNRNF+GR
Sbjct: 499 YKAAGLTQYLDELGFALVGYGCTTCIGNSGPLPEPIEKAIQKADLTVASVLSGNRNFEGR 558

Query: 515 IHPYAKQAFLASPPLVVAYAIAGTIRFDIEKDVLGLDKDGKPVRLINIWPSDAEI-DAVI 573
           +HP  K  +LASPPLVVAYA+AGT+R DI  + LG DKDG PV L +IWPS  EI DAV 
Sbjct: 559 VHPLVKTNWLASPPLVVAYALAGTVRIDISSEPLGNDKDGHPVYLRDIWPSTKEIADAV- 617

Query: 574 AASVKPEQFRKVYEPMFDLSVDYGDKVSP---LYDWRPQSTYIRRPPYWE---GALAGER 627
              V    F K Y  +F     +     P    Y W   STYI+ PP+++   G     +
Sbjct: 618 -TQVNTAMFHKEYAEVFAGDEQWQAIEVPQAATYVWNNDSTYIQHPPFFDDIGGPAPVVK 676

Query: 628 TLKGMRPLAVLGDNITTDHLSPSNAIMMDSAAGEYLHKMGLPEEDFNSYATHRGDHLTAQ 687
            ++G + LA+LGD++TTDH+SP+  I  DS AG YL + G+   DFNSY + RG+H    
Sbjct: 677 DVEGAKVLALLGDSVTTDHISPAGNIKADSPAGHYLREQGVEPRDFNSYGSRRGNHQVMM 736

Query: 688 RATFANPKLKNEMAIVDGKVKQGSLARIEPEGIVTRMWEAIETYMDRKQPLIIIAGADYG 747
           R TFAN +++NEM    G  + G+   I P G    +++A   Y     PL++IAG +YG
Sbjct: 737 RGTFANIRIRNEML---GGEEGGNTIYI-PTGEKLPIYDAAMRYQASGTPLVVIAGQEYG 792

Query: 748 QGSSRDWAAKGVRLAGVEAIVAEGFERIHRTNLVGMGVLPLEFKAGENRATYGIDGTEVF 807
            GSSRDWAAKG  L GV+A++AE FERIHR+NLVGMGVLPL+FK  +NR +  + G E  
Sbjct: 793 TGSSRDWAAKGTNLLGVKAVIAESFERIHRSNLVGMGVLPLQFKLDQNRKSLNLTGKETL 852

Query: 808 DVIG----SIAPRADLTVIITRKNGERVEVPVTCRLDTAEEVSIYEAGGVLQRFAQDFLE 863
           D++G     + PR +LT+++TR++G   +V V CR+DT  EV  ++AGG+L    +  + 
Sbjct: 853 DILGLTGVELTPRMNLTLVVTREDGNTEKVEVLCRIDTLNEVEYFKAGGILHYVLRQLIA 912

Query: 864 S 864
           S
Sbjct: 913 S 913


Lambda     K      H
   0.318    0.136    0.397 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2004
Number of extensions: 93
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 1
Length of query: 867
Length of database: 913
Length adjustment: 43
Effective length of query: 824
Effective length of database: 870
Effective search space:   716880
Effective search space used:   716880
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory