Align Sugar ABC transporter ATP-binding protein (characterized, see rationale)
to candidate Pf1N1B4_6034 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= uniprot:A0A166R419 (517 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_6034 Length = 517 Score = 996 bits (2576), Expect = 0.0 Identities = 517/517 (100%), Positives = 517/517 (100%) Query: 1 MSVCAPNAVLSVSGIGKTYAQPVLTGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVAP 60 MSVCAPNAVLSVSGIGKTYAQPVLTGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVAP Sbjct: 1 MSVCAPNAVLSVSGIGKTYAQPVLTGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVAP 60 Query: 61 TTGQMRFQGRDYRPGSRSQAEELGIRMVMQELNLLPTLSVAENLFLDNLPSHGGWISRKQ 120 TTGQMRFQGRDYRPGSRSQAEELGIRMVMQELNLLPTLSVAENLFLDNLPSHGGWISRKQ Sbjct: 61 TTGQMRFQGRDYRPGSRSQAEELGIRMVMQELNLLPTLSVAENLFLDNLPSHGGWISRKQ 120 Query: 121 LRKAAIEAMAQVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTARE 180 LRKAAIEAMAQVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTARE Sbjct: 121 LRKAAIEAMAQVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTARE 180 Query: 181 VEMLFEQITRLQARGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTL 240 VEMLFEQITRLQARGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTL Sbjct: 181 VEMLFEQITRLQARGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTL 240 Query: 241 MVGRELGEHIDMGPRKIGAPALTVKGLTRSDKVRDVSFEVRAGEIFGISGLIGAGRTELL 300 MVGRELGEHIDMGPRKIGAPALTVKGLTRSDKVRDVSFEVRAGEIFGISGLIGAGRTELL Sbjct: 241 MVGRELGEHIDMGPRKIGAPALTVKGLTRSDKVRDVSFEVRAGEIFGISGLIGAGRTELL 300 Query: 301 RLIFGADTADSGTVALGASAQVVSIRSPADAVGHGIALITEDRKGEGLLLTQSISANIAL 360 RLIFGADTADSGTVALGASAQVVSIRSPADAVGHGIALITEDRKGEGLLLTQSISANIAL Sbjct: 301 RLIFGADTADSGTVALGASAQVVSIRSPADAVGHGIALITEDRKGEGLLLTQSISANIAL 360 Query: 361 GNMPVISSGGFVNNGDEMSLAQRQINAMRIRSSSPTQLVSELSGGNQQKVVIGRWLERDC 420 GNMPVISSGGFVNNGDEMSLAQRQINAMRIRSSSPTQLVSELSGGNQQKVVIGRWLERDC Sbjct: 361 GNMPVISSGGFVNNGDEMSLAQRQINAMRIRSSSPTQLVSELSGGNQQKVVIGRWLERDC 420 Query: 421 TVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLI 480 TVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLI Sbjct: 421 TVMLFDEPTRGIDVGAKFDIYALLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGRLI 480 Query: 481 DTFERDSWTQDDLLAAAFAGYQKRDALFNEAAPRDLP 517 DTFERDSWTQDDLLAAAFAGYQKRDALFNEAAPRDLP Sbjct: 481 DTFERDSWTQDDLLAAAFAGYQKRDALFNEAAPRDLP 517 Lambda K H 0.319 0.137 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1051 Number of extensions: 35 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 517 Length of database: 517 Length adjustment: 35 Effective length of query: 482 Effective length of database: 482 Effective search space: 232324 Effective search space used: 232324 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory