Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate Pf1N1B4_4286 Inositol transport system ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >lcl|FitnessBrowser__pseudo1_N1B4:Pf1N1B4_4286 Inositol transport system ATP-binding protein Length = 526 Score = 394 bits (1012), Expect = e-114 Identities = 230/508 (45%), Positives = 322/508 (63%), Gaps = 17/508 (3%) Query: 13 LLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGECH 72 LL + N+ K FPGV AL V+L G V ALMGENGAGKSTLMKI++G Y D GE Sbjct: 32 LLEIINVSKGFPGVVALSDVQLRVRPGSVLALMGENGAGKSTLMKIIAGIYQPD-AGELR 90 Query: 73 IDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGL--VARGDMVRA 130 + G+ V + P +A G+A+I+QEL+L P++S+AENI++GR Q GL + +M R Sbjct: 91 LRGKPVVFETPLAALQAGIAMIHQELNLMPHMSIAENIWIGRE-QLNGLHMIDHREMHRC 149 Query: 131 CAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLF 190 A L RL + P V +LSIA+RQ+VEIA+AV +++ IL+MDEPT+ ++ E LF Sbjct: 150 TAKLLERLRINLDPEELVGNLSIAERQMVEIAKAVSYDSDILIMDEPTSAITDKEVAHLF 209 Query: 191 ALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRD 250 ++I L+ +G I+YI+H+M E+ +AD V V RDG ++G + +L+ MMVGR+ Sbjct: 210 SIIADLKRQGKGIIYITHKMNEVFSIADEVAVFRDGAYIGLQRADSMDGDSLISMMVGRE 269 Query: 251 LSGFYTKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRTELARLV 310 LS + +++LSVRD+ K SFDL AGE+LG+AGL+G+GRT +A + Sbjct: 270 LSQLFPVREKPI--GDLLLSVRDLKLDGIFKDVSFDLHAGEILGIAGLMGSGRTNVAEAI 327 Query: 311 FGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQSVHENI 370 FG GE+R+ G +V + P AI+ G A LTEDRKL GLF SV EN+ Sbjct: 328 FGITPSDGGEIRL-----DGEVVRI--SDPHMAIEKGFALLTEDRKLSGLFPCLSVLENM 380 Query: 371 NLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVMLSRLLE 430 + V +G G + + A R + L ++ + + LSGGNQQK +L+R L Sbjct: 381 EMAVLPH-YVGNGFIQQKALRALCEDMCKKLRVKTPSLEQCIDTLSGGNQQKALLARWLM 439 Query: 431 IQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRVLVMREG 490 PR+LILDEPTRG+D+GAK+EIYRLI+ LA G+A++MISSELPEV+G+ DRV+VM EG Sbjct: 440 TNPRILILDEPTRGIDVGAKAEIYRLISYLASEGMAVIMISSELPEVLGMSDRVMVMHEG 499 Query: 491 TLAGEVRPAGSAAETQERIIALATGAAA 518 L G + + TQER++ LA+G +A Sbjct: 500 DLMGTL---DRSEATQERVMQLASGMSA 524 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 637 Number of extensions: 30 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 526 Length adjustment: 35 Effective length of query: 505 Effective length of database: 491 Effective search space: 247955 Effective search space used: 247955 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory