GapMind for catabolism of small carbon sources

 

Aligments for a candidate for fruI in Pseudomonas fluorescens FW300-N1B4

Align Phosphoenolpyruvate--protein phosphotransferase (EC 2.7.3.9) (characterized)
to candidate Pf1N1B4_1146 Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)

Query= reanno::pseudo1_N1B4:Pf1N1B4_1146
         (953 letters)



>FitnessBrowser__pseudo1_N1B4:Pf1N1B4_1146
          Length = 953

 Score = 1825 bits (4726), Expect = 0.0
 Identities = 953/953 (100%), Positives = 953/953 (100%)

Query: 1   MLELTIEQISMGQSAVDKATALQLLADRLVTDGLVADGYLAGLQAREAQGSTFLGQGIAI 60
           MLELTIEQISMGQSAVDKATALQLLADRLVTDGLVADGYLAGLQAREAQGSTFLGQGIAI
Sbjct: 1   MLELTIEQISMGQSAVDKATALQLLADRLVTDGLVADGYLAGLQAREAQGSTFLGQGIAI 60

Query: 61  PHGTPQTRDLVFSTGVRLMQFPDGVDWGDGQIVYLAIGIAAKSDEHLRLLQLLTRALGET 120
           PHGTPQTRDLVFSTGVRLMQFPDGVDWGDGQIVYLAIGIAAKSDEHLRLLQLLTRALGET
Sbjct: 61  PHGTPQTRDLVFSTGVRLMQFPDGVDWGDGQIVYLAIGIAAKSDEHLRLLQLLTRALGET 120

Query: 121 DLGQALRRASTAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS 180
           DLGQALRRASTAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS
Sbjct: 121 DLGQALRRASTAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS 180

Query: 181 NGFAGVLQQVDALPLGDGLWWLHSEQTVKRPGLAFVTPDKPMRYLGQPLSGLFCLASLGE 240
           NGFAGVLQQVDALPLGDGLWWLHSEQTVKRPGLAFVTPDKPMRYLGQPLSGLFCLASLGE
Sbjct: 181 NGFAGVLQQVDALPLGDGLWWLHSEQTVKRPGLAFVTPDKPMRYLGQPLSGLFCLASLGE 240

Query: 241 AHQALLERLCALLIEGRGHELGRATSSRAVLEVLGGEVPADWPSARIALANTHGLHARPA 300
           AHQALLERLCALLIEGRGHELGRATSSRAVLEVLGGEVPADWPSARIALANTHGLHARPA
Sbjct: 241 AHQALLERLCALLIEGRGHELGRATSSRAVLEVLGGEVPADWPSARIALANTHGLHARPA 300

Query: 301 KILAQLAKSFEGEIRVRIVDGHDSAVSVKSLSKLLSLGARRGQVLEFIAEPTIAADALPA 360
           KILAQLAKSFEGEIRVRIVDGHDSAVSVKSLSKLLSLGARRGQVLEFIAEPTIAADALPA
Sbjct: 301 KILAQLAKSFEGEIRVRIVDGHDSAVSVKSLSKLLSLGARRGQVLEFIAEPTIAADALPA 360

Query: 361 LLAAIEEGLGEEVEPLPAVSQHREVIADVAEVLLAPASGSLIQAIAAAPGIAIGPAHIQV 420
           LLAAIEEGLGEEVEPLPAVSQHREVIADVAEVLLAPASGSLIQAIAAAPGIAIGPAHIQV
Sbjct: 361 LLAAIEEGLGEEVEPLPAVSQHREVIADVAEVLLAPASGSLIQAIAAAPGIAIGPAHIQV 420

Query: 421 QQVIDYPLRGESAAIERERLKQALADVRRDIEGLIERSKAKAIREIFITHQEMLDDPELT 480
           QQVIDYPLRGESAAIERERLKQALADVRRDIEGLIERSKAKAIREIFITHQEMLDDPELT
Sbjct: 421 QQVIDYPLRGESAAIERERLKQALADVRRDIEGLIERSKAKAIREIFITHQEMLDDPELT 480

Query: 481 DEVDTRLKQGESAEAAWMAVIEAAAKQQESLQDALLAERAADLRDIGRRVLAQLSGVETP 540
           DEVDTRLKQGESAEAAWMAVIEAAAKQQESLQDALLAERAADLRDIGRRVLAQLSGVETP
Sbjct: 481 DEVDTRLKQGESAEAAWMAVIEAAAKQQESLQDALLAERAADLRDIGRRVLAQLSGVETP 540

Query: 541 AEPEQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAV 600
           AEPEQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAV
Sbjct: 541 AEPEQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAV 600

Query: 601 LLLKPGTPLLIDGQRGRLHVDADAATLQRATEERDTRELRLKAAAEQRHQPALTTDGHAV 660
           LLLKPGTPLLIDGQRGRLHVDADAATLQRATEERDTRELRLKAAAEQRHQPALTTDGHAV
Sbjct: 601 LLLKPGTPLLIDGQRGRLHVDADAATLQRATEERDTRELRLKAAAEQRHQPALTTDGHAV 660

Query: 661 EVFANIGESAGVTSAVEQGAEGIGLLRTELIFMAHSQAPDEATQEVEYRRVLDGLAGRPL 720
           EVFANIGESAGVTSAVEQGAEGIGLLRTELIFMAHSQAPDEATQEVEYRRVLDGLAGRPL
Sbjct: 661 EVFANIGESAGVTSAVEQGAEGIGLLRTELIFMAHSQAPDEATQEVEYRRVLDGLAGRPL 720

Query: 721 VVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQVMEAQLRALLRAADNRPLRIM 780
           VVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQVMEAQLRALLRAADNRPLRIM
Sbjct: 721 VVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQVMEAQLRALLRAADNRPLRIM 780

Query: 781 FPMVGSVDEWRQARDMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTND 840
           FPMVGSVDEWRQARDMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTND
Sbjct: 781 FPMVGSVDEWRQARDMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTND 840

Query: 841 LTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVL 900
           LTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVL
Sbjct: 841 LTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVL 900

Query: 901 VGLGVDELSVSGRSIAEVKARIRELSLTQTQTLAQQALAVGSANEVRALVEAL 953
           VGLGVDELSVSGRSIAEVKARIRELSLTQTQTLAQQALAVGSANEVRALVEAL
Sbjct: 901 VGLGVDELSVSGRSIAEVKARIRELSLTQTQTLAQQALAVGSANEVRALVEAL 953


Lambda     K      H
   0.318    0.135    0.381 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2467
Number of extensions: 74
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 953
Length of database: 953
Length adjustment: 44
Effective length of query: 909
Effective length of database: 909
Effective search space:   826281
Effective search space used:   826281
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory