Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate Pf1N1B4_3984 Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4)
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3984 Length = 651 Score = 365 bits (937), Expect = e-105 Identities = 193/454 (42%), Positives = 281/454 (61%), Gaps = 4/454 (0%) Query: 2 PPFSRVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDS 61 P + +LVANRGEIA RV++ K +G+T +AV+S D+ A H++ AD +G + A DS Sbjct: 4 PVLTTLLVANRGEIACRVMRTAKALGLTTVAVHSATDRDARHSREADIRVDLGGSKAADS 63 Query: 62 YLNIEHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDG 121 YL I+ +I AA+ + AIHPGYGFLSENA FA A+E AG+ F+GP + + + K Sbjct: 64 YLQIDKLIAAAKASGAQAIHPGYGFLSENAGFARAIEAAGLIFLGPPASAIDAMGSKSAA 123 Query: 122 KRLANMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMD 181 K L AGVP PG G ++ E+IGYP+++KA +GGGG G+ V++ QL + Sbjct: 124 KALMETAGVPLVPGYHGEAQDLETFRDACERIGYPVLLKATAGGGGKGMKVVEDVSQLAE 183 Query: 182 VWERNKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLI 241 +R A +FG + + +EKY + PRH+E Q+ D++GN + ER+C+IQRR+QK++ Sbjct: 184 ALASAQREALSSFGDSRMLVEKYLLKPRHVEIQVFADQHGNCLYLNERDCSIQRRHQKVV 243 Query: 242 EEAPSPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHP 301 EEAP+P L E R +M E ++ + I Y GT E D +F+F+E+N RLQVEHP Sbjct: 244 EEAPAPGLSPELRRAMGEAAVRSAQAIGYVGAGTVEFLL-DARGEFFFMEMNTRLQVEHP 302 Query: 302 TTELIFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVT 361 TE I +DLV QI++A GE LP +Q+ + + G AIE R+ AED N+F ++G + Sbjct: 303 VTEAITGLDLVAWQIRVARGEALPMTQDQV--PLIGHAIEVRLYAEDPGNDFLPATGRLA 360 Query: 362 YYRE-PTGPGVRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKIGGI 420 YRE GPG RVDSG+E G + P+YD ++ KLI +GE RE A + L ++ IGG+ Sbjct: 361 LYRESAAGPGRRVDSGVEEGDEISPFYDPMLGKLIAWGEDREQARLRLLSMLDEFAIGGL 420 Query: 421 KTTIELYKWIMQDPDFQEGKFSTSYISQKTDQFV 454 KT I + I+ P F + T +I + +Q + Sbjct: 421 KTNINFLRRIIGHPAFAAAELDTGFIPRYQEQLL 454 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 754 Number of extensions: 39 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 651 Length adjustment: 36 Effective length of query: 473 Effective length of database: 615 Effective search space: 290895 Effective search space used: 290895 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory