Align Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized)
to candidate Pf1N1B4_879 Phosphoribosylglycinamide formyltransferase 2 (EC 2.1.2.-)
Query= SwissProt::P33221 (392 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_879 Length = 393 Score = 517 bits (1331), Expect = e-151 Identities = 264/392 (67%), Positives = 312/392 (79%), Gaps = 1/392 (0%) Query: 1 MTLLGTALRPAATRVMLLGSGELGKEVAIECQRLGVEVIAVDRYADAPAMHVAHRSHVIN 60 MT +GT L P ATRV++ G GELGKEV IE QRLGVEVIAVDRYA+APAM VAHRSHVIN Sbjct: 1 MTRIGTPLSPTATRVLMCGCGELGKEVVIELQRLGVEVIAVDRYANAPAMQVAHRSHVIN 60 Query: 61 MLDGDALRRVVELEKPHYIVPEIEAIATDMLIQLEEEGLNVVPCARATKLTMNREGIRRL 120 MLDG ALR V+E EKPH+IVPEIEAIAT L++LE EG V+P ARATKLTMNREGIRRL Sbjct: 61 MLDGAALRAVIEAEKPHFIVPEIEAIATATLVELESEGFTVIPTARATKLTMNREGIRRL 120 Query: 121 AAEELQLPTSTYRFADSESLFREAVADIGYPCIVKPVMSSSGKGQTFIRSAEQLAQAWKY 180 AAEEL LPTS Y FAD+ + +AV D+G+PC+VKPVMSSSGKGQ+ +RS + + +AW Y Sbjct: 121 AAEELGLPTSPYYFADTFEDYSKAVDDLGFPCVVKPVMSSSGKGQSLLRSVDDVRKAWDY 180 Query: 181 AQQGGRAGAGRVIVEGVVKFDFEITLLTVSAVDGVHFCAPVGHRQEDGDYRESWQPQQMS 240 AQ+GGRAG GRVI+EG + FD+EITLLTV V G FCAPVGHRQE GDY+ESWQPQ MS Sbjct: 181 AQEGGRAGKGRVIIEGFIDFDYEITLLTVRHVGGTTFCAPVGHRQEKGDYQESWQPQAMS 240 Query: 241 PLALERAQEIARKVVLALGGYGLFGVELFVCGDEVIFSEVSPRPHDTGMVTLISQDLSEF 300 P+AL ++ +A+ V ALGG GLFGVELF+ GD+V FSEVSPRPHDTG+VTLISQDLS+F Sbjct: 241 PVALAESERVAKAVTEALGGRGLFGVELFIKGDQVWFSEVSPRPHDTGLVTLISQDLSQF 300 Query: 301 ALHVRAFLGLPVGGIRQYGPAASAVILPQLTSQNVTFDNVQNAVG-ADLQIRLFGKPEID 359 ALH RA LGLP+ IRQ+GP+ASAVIL + S F N+ A+G D +RLFGKPE++ Sbjct: 301 ALHARAILGLPIPLIRQFGPSASAVILVEGQSTQTAFANLGAALGEPDTALRLFGKPEVN 360 Query: 360 GSRRLGVALATAESVVDAIERAKHAAGQVKVQ 391 G RR+GVALA ES+ A +A A+ V V+ Sbjct: 361 GQRRMGVALARDESIEAARAKATRASQAVVVE 392 Lambda K H 0.320 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 487 Number of extensions: 15 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 392 Length of database: 393 Length adjustment: 31 Effective length of query: 361 Effective length of database: 362 Effective search space: 130682 Effective search space used: 130682 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory