Align Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized)
to candidate Pf1N1B4_410 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2)
Query= TCDB::P0AAG8 (506 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_410 Length = 514 Score = 382 bits (981), Expect = e-110 Identities = 203/492 (41%), Positives = 311/492 (63%), Gaps = 7/492 (1%) Query: 14 LEMSGINKSFPGVKALDNVNLKVRPHSIHALMGENGAGKSTLLKCLFGIYQKDSGTILFQ 73 L +GI K+FPGVKALD ++ P +HALMGENGAGKSTLLK L G Y SG + Sbjct: 16 LRFNGIGKTFPGVKALDGISFVAHPGQVHALMGENGAGKSTLLKILGGAYTPSSGDLQIG 75 Query: 74 GKEIDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYRETKAI 133 ++ F S +++ +G++++HQEL+LV + +V +N++LG P +++ + ++ A Sbjct: 76 EQKRIFKSTADSIGSGVAVIHQELHLVPEMTVAENLFLGHLPASFGLINRGVLRQQALAC 135 Query: 134 FDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFTIIR 193 L +IDP+ +VG LS+ Q Q++EIAKA S A ++ DEPTSSL+ +E++ L II Sbjct: 136 LKGLADEIDPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAIIG 195 Query: 194 KLKERGCGIVYISHKMEEIFQLCDEVTVLRDGQWIAT-EPLAGLTMDKIIAMMVGRSLNQ 252 +L++ G ++Y+SH+MEE+F++C+ VTV +DG+++ T E ++ LT D+++ MVGR + Sbjct: 196 RLRDEGKVVLYVSHRMEEVFRICNAVTVFKDGRFVRTFEDMSALTHDQLVTCMVGRDIQD 255 Query: 253 RFPDKENKPGEVILEVRNL--TSLRQPSIRDVSFDLHKGEILGIAGLVGAKRTDIVETLF 310 + + G V L+V L LR+P VSF+ HKGEILG+ GLVGA RT++ L Sbjct: 256 IYDYRSRPRGAVALKVDGLLGPGLREP----VSFEAHKGEILGLFGLVGAGRTELFRMLS 311 Query: 311 GIREKSAGTITLHGKQINNHNANEAINHGFALVTEERRSTGIYAYLDIGFNSLISNIRNY 370 G+ +AG + L G+++ H+ +AI G L E+R+ GI + N IS + Sbjct: 312 GLTRNTAGRLELRGRELKLHSPRDAIAAGILLCPEDRKKEGILPLASVAENINISARGAH 371 Query: 371 KNKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWLLTQPEILML 430 LL K + I +++VKTP +I LSGGNQQK I+GRWL ++L+L Sbjct: 372 STFGCLLRGLWEKDNADKQIKALKVKTPNAAQKIMYLSGGNQQKAILGRWLSMPMKVLLL 431 Query: 431 DEPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSNGLVSGIVDT 490 DEPTRGID+GAK EIYQ+I LA G +I++SS++ E++GI+DRILV+ G + G + Sbjct: 432 DEPTRGIDIGAKAEIYQIIHNLAASGIAVIVVSSDLMEVMGISDRILVLCEGAMRGELTR 491 Query: 491 KTTTQNEILRLA 502 + ++ +L+LA Sbjct: 492 EQANESNLLQLA 503 Lambda K H 0.318 0.136 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 604 Number of extensions: 30 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 514 Length adjustment: 34 Effective length of query: 472 Effective length of database: 480 Effective search space: 226560 Effective search space used: 226560 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory