Align phosphomannomutase (EC 5.4.2.8) (characterized)
to candidate Pf1N1B4_2122 Phosphomannomutase (EC 5.4.2.8) / Phosphoglucomutase (EC 5.4.2.2)
Query= BRENDA::P26276 (463 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_2122 Length = 465 Score = 719 bits (1856), Expect = 0.0 Identities = 355/459 (77%), Positives = 404/459 (88%), Gaps = 2/459 (0%) Query: 6 APTLPASIFRAYDIRGVVGDTLTAETAYWIGRAIGSESLARGEPCVAVGRDGRLSGPELV 65 AP P SIFRAYDIRG V + L AETAYW+GRAIGS+SLA+ EP V+VGRDGRLSGPELV Sbjct: 8 APKFPDSIFRAYDIRGTVPEFLNAETAYWLGRAIGSQSLAQNEPNVSVGRDGRLSGPELV 67 Query: 66 KQLIQGLVDCGCQVSDVGMVPTPVLYYAANVLEGKSGVMLTGSHNPPDYNGFKIVVAGET 125 +QLI+GL D GC VSDVG+VPTP LYYAANVL GKSGVMLTGSHNP +YNGFKIV+AG+T Sbjct: 68 EQLIKGLADSGCHVSDVGLVPTPALYYAANVLAGKSGVMLTGSHNPSNYNGFKIVIAGDT 127 Query: 126 LANEQIQALRERIEKNDLASGVGSVEQVDILPRYFKQIRDDIAMAKPMKVVVDCGNGVAG 185 LANEQIQAL +R++ N+L+SG GS+ QV+IL RY +I DI +A+ +KVVVDCGNG AG Sbjct: 128 LANEQIQALHDRLKTNNLSSGKGSITQVEILDRYNTEIVQDIKLARRLKVVVDCGNGAAG 187 Query: 186 VIAPQLIEALGCSVIPLYCEVDGNFPNHHPDPGKPENLKDLIAKVKAENADLGLAFDGDG 245 VIAPQLIEAL C VIPL+CEVDGNFPNHHPDPGKPENL DLIAKVK NADLGLAFDGDG Sbjct: 188 VIAPQLIEALNCEVIPLFCEVDGNFPNHHPDPGKPENLVDLIAKVKETNADLGLAFDGDG 247 Query: 246 DRVGVVTNTGTIIYPDRLLMLFAKDVVSRNPGADIIFDVKCTRRLIALISGYGGRPVMWK 305 DRVGVVTNTG+I++PDRLLMLFA+DVV+RNP A+IIFDVKCTRRLI LI YGGRP+MWK Sbjct: 248 DRVGVVTNTGSIVFPDRLLMLFARDVVARNPDAEIIFDVKCTRRLIPLIKEYGGRPLMWK 307 Query: 306 TGHSLIKKKMKETGALLAGEMSGHVFFKERWFGFDDGIYSAARLLEILSQDQRDSEHVFS 365 TGHSLIKKKMK++GALLAGEMSGH+FFKERWFGFDDGIY+AARLLEILS+++ +E +F+ Sbjct: 308 TGHSLIKKKMKQSGALLAGEMSGHIFFKERWFGFDDGIYAAARLLEILSKEKSTAEELFA 367 Query: 366 AFPSDISTPEINITVTEDSKFAIIEALQRDAQWGEG-NITTLDGVRVDYPKGWGLVRASN 424 FP+DISTPEINI VTE+SKF+II+AL DAQWGEG ++TT+DGVRVDY KGWGLVRASN Sbjct: 368 TFPNDISTPEINIHVTEESKFSIIDAL-HDAQWGEGADLTTIDGVRVDYAKGWGLVRASN 426 Query: 425 TTPVLVLRFEADTEEELERIKTVFRNQLKAVDSSLPVPF 463 TTPVLVLRFEAD E EL+RIK VF QLK V L +PF Sbjct: 427 TTPVLVLRFEADDEAELQRIKDVFHVQLKRVAPDLQLPF 465 Lambda K H 0.319 0.138 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 703 Number of extensions: 19 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 463 Length of database: 465 Length adjustment: 33 Effective length of query: 430 Effective length of database: 432 Effective search space: 185760 Effective search space used: 185760 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory