Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate Pf1N1B4_3988 Acetoacetyl-CoA synthetase (EC 6.2.1.16) / Long-chain-fatty-acid--CoA ligase (EC 6.2.1.3)
Query= BRENDA::A4YDR9 (549 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3988 Length = 568 Score = 174 bits (440), Expect = 1e-47 Identities = 148/528 (28%), Positives = 239/528 (45%), Gaps = 50/528 (9%) Query: 41 VVYRDSRYTYSTFYDNVMVQASALMRRGFSREDKLSFISRNRPEFLESFFGVPYAGGVLV 100 V ++ RYT+ + V + A A + G D+L + N ++ S F G +LV Sbjct: 45 VRHQQLRYTWQQLSETVDLHARAFLALGLQTGDRLGIWAPNCAQWCISQFASAKIGVILV 104 Query: 101 PINFRLSPKEMAYIINHSDSKFVVVDEPYLNS---------LLEVKDQIKAEI------- 144 IN E+ Y++ S +++V Y S + E+ +Q ++ Sbjct: 105 NINPAYRSSELEYVLKQSGCQWLVCAGAYKTSDYHGMLQGLIPELAEQSIGQLQSERLPE 164 Query: 145 ---ILLEDPDNPSA----SETARKEVRMTYRELVKGGSRDPLPIPAKEEYSMITLYYTSG 197 ++ D PS S+ ++ +L + +D L + + YTSG Sbjct: 165 LRGVISLDAQPPSGFLPWSQLTDLAASVSIEQLRE--RQDSLHFD-----QAVNIQYTSG 217 Query: 198 TTGLPKGVMHHHRGAFLNAMAEVLEHQMDLNSVYLWTLPMFHAASWGF-SWATVAVGATN 256 TTG PKG H N + N + +P++H + V G+T Sbjct: 218 TTGFPKGATLSHYNILNNGYMVGESLGLTANDRLVIPVPLYHCFGMVMGNLGCVTHGSTM 277 Query: 257 VCLDKVDYPLI-YRLVEKERVTHMCAAPTVYVNLADYMKRNNLKFSNRVHMLVAGAA-PA 314 + + PL+ V +E+ T + PT+++ + D KR S+ ++AGA P Sbjct: 278 IYPNDAFDPLLTLSTVAEEKATALYGVPTMFIAMLDQPKRAEFDLSSLRTGIMAGATCPI 337 Query: 315 PATLKAMQEIGGYMCHV---YGLTETYGPHSICEWRREWDSLPLEEQAKLKARQGIPYVS 371 + + E+ +M V YG+TET P S+ + P +E G Sbjct: 338 EVMRRVINEM--HMSEVQIAYGMTET-SPVSL-------QTGPSDELELRVTTVGRTQPQ 387 Query: 372 FEMDVFDANGKPVPWDGKTIGEVVMRGHNVALGYYKNPEKTAESFRD-GWFHSGDAAVVH 430 E + D G VP TIGE+ RG++V LGY+ NP+ TAE+ + GW H+GD A ++ Sbjct: 388 LESKIIDEAGNLVPRG--TIGELCTRGYSVMLGYWNNPQGTAEAIDEAGWMHTGDLASMN 445 Query: 431 PDGYIEIVDRFKDLINTGGEKVSSILVEKTLMEIPGVKAVAVYGTPDEKWGEVVTARIEL 490 +GY+ I R KD+I GGE + +E+ P V V V G P ++GE + A I+ Sbjct: 446 DEGYVCIAGRNKDMIIRGGENIYPRELEEFFFTHPAVADVQVIGIPCSRYGEEIVAWIKF 505 Query: 491 QEGVKLTEEEVIKFCKERLAHFECPKIVEF-GPIPMTATGKMQKYVLR 537 G TE+E+ +CKER+AHF+ P+ +F PMT TGK+QK+ +R Sbjct: 506 HPGHSATEQELQAWCKERIAHFKTPRYFKFVEEFPMTVTGKIQKFRMR 553 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 658 Number of extensions: 34 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 549 Length of database: 568 Length adjustment: 36 Effective length of query: 513 Effective length of database: 532 Effective search space: 272916 Effective search space used: 272916 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory