Align 4-hydroxybutyrate-CoA ligase (EC 6.2.1.40) (characterized)
to candidate Pf1N1B4_5982 Medium-chain-fatty-acid--CoA ligase (EC 6.2.1.-)
Query= BRENDA::A4YDR9 (549 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_5982 Length = 547 Score = 234 bits (598), Expect = 5e-66 Identities = 169/538 (31%), Positives = 271/538 (50%), Gaps = 30/538 (5%) Query: 19 YSVLTPLLFLERAGKYFKDKTAVVYRDS-RYTYSTFYDNVMVQASALMRRGFSREDKLSF 77 Y +L L L +G ++ +VY D RY+Y T + A+AL G D ++ Sbjct: 16 YPLLIKQLLL--SGVRYEPGREIVYADKLRYSYQTLNRRIRRLANALTAAGVKAGDTVAL 73 Query: 78 ISRNRPEFLESFFGVPYAGGVLVPINFRLSPKEMAYIINHSDSKFVVVDEPYLNSLLEVK 137 + + +LE FF VP G VL +N RLSP ++ + +NH++ V+V + +L + ++ Sbjct: 74 LDWDSHRYLECFFAVPMIGAVLHTVNIRLSPDQVLFTMNHAEDDLVLVHDDFLPLVEQIH 133 Query: 138 DQIKAEIILLEDPDNPSASETARKEVRMTYRELVKGGSRDPLPIPAKEEYSMITLYYTSG 197 +++ L+ D+ A++T+ V Y L+ G S D P +E S+ TL+YT+G Sbjct: 134 GRLETVKGYLQLTDD-IATDTSLP-VLGEYENLLSG-SADQYDFPDFDENSVATLFYTTG 190 Query: 198 TTGLPKGVMHHHRGAFL---NAMAEVLEHQ----MDLNSVYLWTLPMFHAASWGFSWATV 250 TTG PKGV HR L NA+ + +Q + + VY+ PMFH +WG + Sbjct: 191 TTGDPKGVYFTHRQLVLHTLNAVGTLGVYQGLPLLRSDDVYMPITPMFHVHAWGVPYVAT 250 Query: 251 AVGATNVCLDKVDYPLIYRLVEKERVTHMCAAPTVYVNLADYMKRNNLKFSNRVHMLVAG 310 +G V + + + RL +E+VT PT+ + + +F ML+ G Sbjct: 251 LMGLKQVYPGRYEPNSLVRLYREEKVTFSHCVPTILQMILSCEEAAQTRFDGW-KMLLGG 309 Query: 311 AA-----PAPATLKAMQEIGGYMCHVYGLTETYGPHSICEWRREWDSLPLEEQAKLKARQ 365 +A + A+ K +Q GY G++ET + R E + + Q + + Sbjct: 310 SALTLGIASEASAKGIQVHSGY-----GMSETCPLLCLTYLRDEDLAQSTQTQLATRIKT 364 Query: 366 GIPYVSFEMDVFDANGKPVPWDGKTIGEVVMRGHNVALGYYKNPEKTAESFRDGWFHSGD 425 G P ++ + DANG V DG+++GE+V+R + GY K PEK AE + +GW H+GD Sbjct: 365 GTPVPMVDLKIIDANGNDVAHDGESLGEIVVRAPWLTQGYLKEPEKGAELWHNGWMHTGD 424 Query: 426 AAVVHPDGYIEIVDRFKDLINTGGEKVSSILVEKTLMEIPGVKAVAVYGTPDEKWGEVVT 485 A + G +EI DR KD+I TGGE +SS+ +E + E V +VAV G DE+WGE Sbjct: 425 LASIDALGGVEIKDRIKDVIKTGGEWISSLELESLISEHAAVMSVAVVGIADEQWGERPM 484 Query: 486 ARIELQEGV----KLTEEEVIKFCKE-RLAHFECPKIVEF-GPIPMTATGKMQKYVLR 537 A + + G K+ E + F + R+ + PK +F IP T+ GK+ K ++R Sbjct: 485 ALVVCEPGQYLDRKILEAHLQGFVERGRINKWAIPKQFKFVAEIPKTSVGKINKKLIR 542 Lambda K H 0.319 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 694 Number of extensions: 31 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 547 Length adjustment: 36 Effective length of query: 513 Effective length of database: 511 Effective search space: 262143 Effective search space used: 262143 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory