Align Anthranilate 1,2-dioxygenase (deaminating, decarboxylating) (EC 1.14.12.1) (characterized)
to candidate Pf1N1B4_5800 Benzoate 1,2-dioxygenase alpha subunit (EC 1.14.12.10)
Query= reanno::pseudo13_GW456_L13:PfGW456L13_2740 (461 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_5800 Length = 454 Score = 414 bits (1064), Expect = e-120 Identities = 217/452 (48%), Positives = 295/452 (65%), Gaps = 15/452 (3%) Query: 12 EYIQGCLDFRPAEGIYRVARDMFTEPELFDLEMELIFEKNWIYACHESEIANPNDFLTMR 71 EY+ L+ P +GIYR R+MFT+P LFDLEME IFE NW+Y HES+I N NDF T Sbjct: 6 EYLHSLLEEDPEQGIYRCKREMFTDPRLFDLEMEHIFEGNWLYLAHESQIPNNNDFYTTT 65 Query: 72 AGRQPMIITRDGNNQLHALINACQHRGATLTRVSKGNQSTFTCPFHAWCYKSDGRLVKVK 131 GRQ + I R+ + +L+A INAC HRGA L R GN+ST+TCPFH W + + G+L+KVK Sbjct: 66 MGRQSIFIARNKDGELNAFINACSHRGAMLCRHKTGNKSTYTCPFHGWTFNNSGKLLKVK 125 Query: 132 APGE--YPEGFD-KATRGLKK-ARIESYKGFVFISLDVNGSDSLEDYLGDAKVFFDMMVA 187 P YP F+ + + L K AR ESY+GF+F SL + +E +LG++ DM+V Sbjct: 126 DPAAAGYPASFNCEGSHDLTKVARFESYRGFLFGSLKADVVPLVE-HLGESAKIIDMIVD 184 Query: 188 QSPTGELEILPGKSTYSYDGNWKLQHENGLDGYHVSTVHYNYVSTVQHRQQVNAANGGVS 247 QS G LE+L G S+Y Y+GNWKL ENG DGYHVS+VH+NY +T R+Q A G + Sbjct: 185 QSTDG-LEVLRGSSSYIYEGNWKLTAENGADGYHVSSVHWNYAATQNQRKQREA--GDCN 241 Query: 248 DTLDYSKLGAGD-AETDDGWFSFKNGHSLLFSDMPNPTVRAGYATVMPRLIEEYGQQQAE 306 T+ AG A+ G++SF GH LL++ NP R Y L ++G+ +A+ Sbjct: 242 PTMS-----AGSWAKQGGGFYSFDKGHMLLWTRWANPQDRPLYER-RDELARDFGKARAD 295 Query: 307 WMMHRLRNLNIYPSLFFMDQISSQLRIVRPVAWNKTEITSQCIGVKGESDADRENRIRQF 366 WM+ RNL +YP+++ MDQ SSQ+RI RP++ N+TEIT CI KGESD R +RIRQ+ Sbjct: 296 WMIENSRNLCLYPNVYLMDQFSSQIRIARPISVNRTEITIYCIAPKGESDHARSSRIRQY 355 Query: 367 EDFFNVSGMGTPDDLVEFREAQRGFQARLERWNEVSRGSEKWVEGPTPNSEVLGINPVLT 426 EDFFNVSGM TPDDL EFR Q G+Q + WN++SRG+E WVEG ++ + ++P+L+ Sbjct: 356 EDFFNVSGMATPDDLEEFRSCQTGYQGSVTAWNDMSRGAEHWVEGADDAAKEIDLHPLLS 415 Query: 427 GTEFTHEGLYINQHGSWQRFLLQGLEQKALKL 458 G EGL++ QH WQ+ +L+ L + +L Sbjct: 416 GVRTEDEGLFVLQHKYWQQTMLKALAAEQSEL 447 Lambda K H 0.318 0.135 0.415 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 619 Number of extensions: 22 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 461 Length of database: 454 Length adjustment: 33 Effective length of query: 428 Effective length of database: 421 Effective search space: 180188 Effective search space used: 180188 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory