Align Aromatic amino acid transport protein AroP (characterized, see rationale)
to candidate Pf1N1B4_3559 Aromatic amino acid transport protein AroP
Query= uniprot:Q4KIP0 (466 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3559 Length = 473 Score = 697 bits (1800), Expect = 0.0 Identities = 338/460 (73%), Positives = 390/460 (84%) Query: 3 QTLKQGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLIM 62 Q GELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAI GFIAF+IM Sbjct: 4 QNSHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAICGFIAFMIM 63 Query: 63 RQLGEMIVEEPVAGSFSHFAHKYWGGYFGFLAGWNYWVLYVLVGMAELTAVGKYVQFWWP 122 RQLGEMIVEEPVAGSFSHFAHKYWGG+ GFL+GWN W+LY+LVGM+ELTAVGKY+ +W P Sbjct: 64 RQLGEMIVEEPVAGSFSHFAHKYWGGFAGFLSGWNCWILYILVGMSELTAVGKYIHYWAP 123 Query: 123 EIPTWVSAAVFFVLVNLINMMNVKFFGEAEFWFAIIKVVAIVGMIVLGCYMLFSGSGGSQ 182 +IPTWVSAA FFVL+NLIN+ NVK FGEAEFWFAIIKVVAIVGMI LG Y+L SG GG Q Sbjct: 124 DIPTWVSAAGFFVLINLINLANVKVFGEAEFWFAIIKVVAIVGMIALGSYLLVSGDGGPQ 183 Query: 183 ASVSNLWSHGGFFPNGGTGLLMAMAFIMFSFGGLELVGITAAEAAEPRKVIPKAINQVVY 242 ASV+NLW HGGFFPNG +GL+MAMA IMFSFGGLE++G TAAEA +P+ VIPKAINQV+Y Sbjct: 184 ASVTNLWEHGGFFPNGVSGLVMAMAIIMFSFGGLEMLGFTAAEADKPKTVIPKAINQVIY 243 Query: 243 RVLIFYVGALAVLLSLYPWDELLVSLNAGGDAYSSSPFVKIFSLIGSDAAAQILNFVVLT 302 R+LIFY+GAL VLLSL PWD LL +LNA GDAYS SPFV++FS++GSD AA ILNFVVLT Sbjct: 244 RILIFYIGALVVLLSLTPWDSLLTTLNASGDAYSGSPFVQVFSMLGSDTAAHILNFVVLT 303 Query: 303 AALSVYNSGVYCNSRMLYGLAEQGDAPKALMKLNKQGVPILALGISALITLLCVLVNYLA 362 AALSVYNSG YCNSRML G+AEQGDAPKAL K++K+GVP+ ++ SA +TL+ VL+NYL Sbjct: 304 AALSVYNSGTYCNSRMLLGMAEQGDAPKALSKIDKRGVPVRSILASAAVTLVAVLLNYLV 363 Query: 363 PHEALELLFALVVAALMINWALISLTHLRFRKAMAEQGVVPSFKAFWSPLSNYLCLAFMV 422 P ALELL +LVVA L+INWA+IS +H +FR+ M + P FKA W P NY+CLAF+V Sbjct: 364 PQHALELLMSLVVATLVINWAMISFSHFKFRQHMNKTKQTPLFKALWYPYGNYVCLAFVV 423 Query: 423 MIVGVMWMIPGIRASVYAIPVWVLVIWGFYLLSRAKKASQ 462 I+GVM +IPGI+ SVYAIPVWV +W Y + + A Q Sbjct: 424 FILGVMLLIPGIQISVYAIPVWVAFMWVCYGIKNKRSAQQ 463 Lambda K H 0.327 0.141 0.440 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 822 Number of extensions: 39 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 466 Length of database: 473 Length adjustment: 33 Effective length of query: 433 Effective length of database: 440 Effective search space: 190520 Effective search space used: 190520 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory