Align 2-aminomuconate semialdehyde dehydrogenase (EC 1.2.1.32) (characterized)
to candidate Pf1N1B4_2673 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-13349 (490 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_2673 Length = 506 Score = 340 bits (872), Expect = 7e-98 Identities = 188/491 (38%), Positives = 282/491 (57%), Gaps = 17/491 (3%) Query: 3 QYRNYINGEWVESARR--FDDVNPVDGTVVAQVHEADREAVDSAIRAGHAAVRGAWGRTT 60 +Y NYI GE+V + F + +PV+G +A+ + E ++ A+ A HAA AWG T+ Sbjct: 18 KYGNYIGGEFVAPVKGQYFTNTSPVNGQPIAEFPRSTAEDIEKALDAAHAAA-DAWGATS 76 Query: 61 VAERAAILCRIADEIDRRYDDFLAAEIADTGKPVAMASTIDIPRGAANFRVFADILKTAP 120 R+ +L +IAD I++ + E D GK V DIP A +FR FA ++ Sbjct: 77 AQARSLVLLKIADRIEQNLELLAITESWDNGKAVRETLNADIPLAADHFRYFAGCIRAQE 136 Query: 121 LDTFQTDLPDGARALNYAVRKPLGVVGVISPWNLPLLLLTWKIAPALACGNAVVAKPSEE 180 + D + Y + +PLGVVG I PWN P+L+ WK+APALA GN +V KP+E+ Sbjct: 137 GSAAEID----GNTVAYHIHEPLGVVGQIIPWNFPILMAAWKLAPALAAGNCIVLKPAEQ 192 Query: 181 TPGTATLLAEVMHTVGVPPGVFNLVHGFGPDSAGEFITTNDDIDAITFTGESRTGSAIMR 240 TP T+L E++ + +PPGV N+V GFG + AGE + T+ I I FTG + GS IM+ Sbjct: 193 TPLGITVLMELIGDL-LPPGVLNVVQGFGKE-AGEALATSKRIAKIAFTGSTPVGSHIMK 250 Query: 241 AAATHVKPVSFELGGKNAAIIFADCD------FEKMIDGMMRAVFLHSGQVCLCAERVYV 294 AA ++ P + ELGGK+ I F D EK +G++ A F + G+VC C R V Sbjct: 251 CAAENIIPSTVELGGKSPNIFFEDIMKAEPSFIEKAAEGLVLA-FFNQGEVCTCPSRALV 309 Query: 295 ERPIYNRFLDAFVERVKALKLGWPQDGTTGMGPLISAEHRDKVLSYFKLAREEGAQVLVG 354 + IY+ F+ + +V +K G P D T +G S + DK+LSY ++A+ EGA++L G Sbjct: 310 QESIYDEFMKVVMNKVLQIKRGDPLDTDTMVGAQASEQQFDKILSYLEIAKGEGAELLTG 369 Query: 355 GGVPKFGDARDAGFWVEPTIITGLPQTARCIKEEVFGPICHVSPFDTEAEAIALANDTKY 414 G V K + G++++PT++ G + R +EE+FGP+ ++ F EAEA+A+ANDT++ Sbjct: 370 GKVEKLEGSLATGYYIQPTLLKGTNKM-RVFQEEIFGPVVSITTFKDEAEALAIANDTEF 428 Query: 415 GLSATTWTGNLNRGHRVSEAMRVGLSWVNSWFLRDLRTPFGGVGLSGIGREGGMHSLNFY 474 GL A WT ++NR +R+ A++ G W N + L FGG SG+GRE L+ Y Sbjct: 429 GLGAGLWTRDINRAYRMGRAIKAGRVWTNCYHLYPAHAAFGGYKKSGVGRETHKMMLDHY 488 Query: 475 SELTNVCVRID 485 + N+ V D Sbjct: 489 QQTKNLLVSYD 499 Lambda K H 0.321 0.137 0.420 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 591 Number of extensions: 25 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 490 Length of database: 506 Length adjustment: 34 Effective length of query: 456 Effective length of database: 472 Effective search space: 215232 Effective search space used: 215232 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory