Align L-tyrosine transporter (characterized)
to candidate Pf1N1B4_3559 Aromatic amino acid transport protein AroP
Query= reanno::pseudo5_N2C3_1:AO356_18530 (471 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3559 Length = 473 Score = 902 bits (2332), Expect = 0.0 Identities = 450/470 (95%), Positives = 459/470 (97%) Query: 1 MSGQNSHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAICGFIAF 60 MSGQNSHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAICGFIAF Sbjct: 1 MSGQNSHSGELKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAICGFIAF 60 Query: 61 MIMRQLGEMIVEEPVAGSFSHFAHKYWGGFAGFLSGWNCWILYILVGMSELTAVGKYIHY 120 MIMRQLGEMIVEEPVAGSFSHFAHKYWGGFAGFLSGWNCWILYILVGMSELTAVGKYIHY Sbjct: 61 MIMRQLGEMIVEEPVAGSFSHFAHKYWGGFAGFLSGWNCWILYILVGMSELTAVGKYIHY 120 Query: 121 WAPDIPTWVSAAAFFILINAINLANVKVFGEAEFWFAIIKVVAIVGMIALGSYLLVSGHG 180 WAPDIPTWVSAA FF+LIN INLANVKVFGEAEFWFAIIKVVAIVGMIALGSYLLVSG G Sbjct: 121 WAPDIPTWVSAAGFFVLINLINLANVKVFGEAEFWFAIIKVVAIVGMIALGSYLLVSGDG 180 Query: 181 GPQASVTNLWSHGGFFPNGVSGLVMAMAIIMFSFGGLEMLGFTAAEADKPKTVIPKAINQ 240 GPQASVTNLW HGGFFPNGVSGLVMAMAIIMFSFGGLEMLGFTAAEADKPKTVIPKAINQ Sbjct: 181 GPQASVTNLWEHGGFFPNGVSGLVMAMAIIMFSFGGLEMLGFTAAEADKPKTVIPKAINQ 240 Query: 241 VIYRILIFYIGALVVLLSLTPWDSLLATLNASGDAYSGSPFVQVFSMLGSNTAAHILNFV 300 VIYRILIFYIGALVVLLSLTPWDSLL TLNASGDAYSGSPFVQVFSMLGS+TAAHILNFV Sbjct: 241 VIYRILIFYIGALVVLLSLTPWDSLLTTLNASGDAYSGSPFVQVFSMLGSDTAAHILNFV 300 Query: 301 VLTAALSVYNSGTYCNSRMLLGMAEQGDAPKALSRIDKRGVPVRSILASAAVTLVAVLLN 360 VLTAALSVYNSGTYCNSRMLLGMAEQGDAPKALS+IDKRGVPVRSILASAAVTLVAVLLN Sbjct: 301 VLTAALSVYNSGTYCNSRMLLGMAEQGDAPKALSKIDKRGVPVRSILASAAVTLVAVLLN 360 Query: 361 YLVPQHALELLMSLVVATLVINWAMISYSHFKFRQHMNQTQQTPLFKALWYPYGNYICLA 420 YLVPQHALELLMSLVVATLVINWAMIS+SHFKFRQHMN+T+QTPLFKALWYPYGNY+CLA Sbjct: 361 YLVPQHALELLMSLVVATLVINWAMISFSHFKFRQHMNKTKQTPLFKALWYPYGNYVCLA 420 Query: 421 FVVFILGVMLLIPGIQISVYAIPVWVVFMWVCYVIKNKRSARQELAVAAA 470 FVVFILGVMLLIPGIQISVYAIPVWV FMWVCY IKNKRSA+Q L A + Sbjct: 421 FVVFILGVMLLIPGIQISVYAIPVWVAFMWVCYGIKNKRSAQQALQAAGS 470 Lambda K H 0.327 0.139 0.432 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 899 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 471 Length of database: 473 Length adjustment: 33 Effective length of query: 438 Effective length of database: 440 Effective search space: 192720 Effective search space used: 192720 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory