Align L-asparagine permease; L-asparagine transport protein (characterized)
to candidate AO353_16120 AO353_16120 D-alanine/D-serine/glycine permease
Query= SwissProt::P77610 (499 letters) >FitnessBrowser__pseudo3_N2E3:AO353_16120 Length = 472 Score = 361 bits (926), Expect = e-104 Identities = 183/436 (41%), Positives = 277/436 (63%), Gaps = 4/436 (0%) Query: 28 KAMGNRQVQMIAIGGAIGTGLFLGAGARLQMAGPALALVYLICGLFSFFILRALGELVLH 87 + +G R ++++A+G IG GLFLG+ ++MAGPA+ L Y+I GL I+RALGE+ +H Sbjct: 20 RELGERHIRLMALGACIGVGLFLGSAKAIEMAGPAIMLSYIIGGLAILVIMRALGEMAVH 79 Query: 88 RPSSGSFVSYAREFLGEKAAYVAGWMYFINWAMTGIVDITAVALYMHYWGAFGGVPQWVF 147 P +GSF YA+++LG A ++ GW Y+ W +T + +ITAVA+YM W F VP+W++ Sbjct: 80 NPVAGSFSRYAQDYLGPLAGFLTGWNYWFLWLVTCVAEITAVAVYMGIW--FPEVPRWIW 137 Query: 148 ALAALTIVGTMNMIGVKWFAEMEFWFALIKVLAIVTFLVVGTVFLGSGQPLDGNTTGFHL 207 ALAAL +G++N+I VK F E EFWFALIK++ I+ +V G + G DG G Sbjct: 138 ALAALVSMGSINLIAVKAFGEFEFWFALIKIVTIIAMVVGGVGVIAFGFGNDGVALGISN 197 Query: 208 ITDNGGFFPHGLLPALVLIQGVVFAFASIEMVGTAAGECKDPQTMVPKAINSVIWRIGLF 267 + +GGF P+G+ L+ +Q V+FA+ +EM+G AGE K+PQ +P AI SV WRI LF Sbjct: 198 LWSHGGFMPNGVQGVLMSLQMVMFAYLGVEMIGLTAGEAKNPQKTIPNAIGSVFWRILLF 257 Query: 268 YVGSVVLLVMLLPWSAYQAGQSPFVTFFSKLGVPYIGSIMNIVVLTAALSSLNSGLYCTG 327 YVG++ +++ + PW+ SPFV F +LG+ I+N VV+TAALSS N G++ TG Sbjct: 258 YVGALFVILSIYPWNEIGTQGSPFVMTFERLGIKTAAGIINFVVITAALSSCNGGIFSTG 317 Query: 328 RILRSMAMGGSAPSFMAKMSRQHVPYAGILATLVVYVVGVFLNYLVPSRVFEIVLNFASL 387 R+L S+A G AP+ AK S VP +L ++ ++GV LNYLVP +VF V A+ Sbjct: 318 RMLYSLAQNGQAPAGFAKTS-NGVPRRALLLSIGALLLGVLLNYLVPEKVFVWVTAIATF 376 Query: 388 GIIASWAFIIVCQMRLRKAIKEGKAADVSFKLPGAPFTSWLTLLFLLSVLVLMAFDYPNG 447 G I +W I++ Q++ RK + + A + +++ P +S+L L FL+ V+ LMA+ +P+ Sbjct: 377 GAIWTWVMILLAQLKFRKGLSPAERAALKYRMWLYPVSSYLALAFLVMVVGLMAY-FPDT 435 Query: 448 TYTIAALPIIGILLVI 463 + P +LL + Sbjct: 436 RVALYVGPAFLVLLTV 451 Lambda K H 0.327 0.141 0.435 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 765 Number of extensions: 53 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 472 Length adjustment: 34 Effective length of query: 465 Effective length of database: 438 Effective search space: 203670 Effective search space used: 203670 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory