Align 2-methylcitrate dehydratase (EC 4.2.1.79) (characterized)
to candidate AO353_00880 AO353_00880 2-methylcitrate dehydratase
Query= BRENDA::P74840 (483 letters) >lcl|FitnessBrowser__pseudo3_N2E3:AO353_00880 AO353_00880 2-methylcitrate dehydratase Length = 494 Score = 600 bits (1547), Expect = e-176 Identities = 306/492 (62%), Positives = 370/492 (75%), Gaps = 16/492 (3%) Query: 5 ELNIRPDFDREIVDIVDYVMNYEITSKVAYDTAHYCLLDTLGCGLEALEYPACKKLLGPI 64 +LNIRPD+D+ + DI DYV+N++I SK A DTA CL+DTLGCGL AL +P C K LGPI Sbjct: 6 DLNIRPDYDKVLQDIADYVLNFKIESKEALDTARNCLMDTLGCGLLALRFPECTKHLGPI 65 Query: 65 VPGTVVPNGARVPGTQFQLDPVQAAFNIGAMIRWLDFNDTWLAAEWGHPSDNLGGILATA 124 V GTVVP GARVPGT F+LDPV+AA++IG ++RWLD+NDTWLAAEWGHPSDNLGGILA A Sbjct: 66 VEGTVVPFGARVPGTHFRLDPVKAAWDIGCIVRWLDYNDTWLAAEWGHPSDNLGGILAVA 125 Query: 125 DWLSRNAVAAGKAPLTMKQVLSGMIKAHEIQGCIALENAFNRVGLDHVLLVKVASTAVVA 184 D LS+ VA G APLTM+ VL MI AHEIQG IALEN+FNRVGLDHVLLVKVASTAV A Sbjct: 126 DHLSQKRVANGDAPLTMRAVLDAMIMAHEIQGVIALENSFNRVGLDHVLLVKVASTAVTA 185 Query: 185 EMLGLTRDEILNAVSLAWVDGQSLRTYRHAPNTGTRKSWAAGDATSRAVRLALMAKTGEM 244 +++G R+++L A+S A+VDGQ+LRTYRHAPN G+RKSWAAGDA+SR VRLA +A GEM Sbjct: 186 KLMGANREQLLAALSHAFVDGQALRTYRHAPNAGSRKSWAAGDASSRGVRLADIAMRGEM 245 Query: 245 GYPSALTAKTWGFYDVSFK------------GETFRFQRPYGSYVMENVLFKISFPAEFH 292 G P LTA WGFYDV F TF + YG+YVMENVLFKISFPAEFH Sbjct: 246 GIPGVLTAPQWGFYDVLFSHTNKDLALKPADKRTFSLSQKYGTYVMENVLFKISFPAEFH 305 Query: 293 SQTAVEAAMTLYEQMQAAGKTAADIEKVTIRTHEACLRIIDKKGPLNNPADRDHCIQYMV 352 +QTA EAA+TL+ Q+ +I+K+ I THE+ +RII K G L N ADRDHCIQYM Sbjct: 306 AQTACEAAVTLHPQV---SNRLDEIDKIVITTHESAIRIISKVGQLANAADRDHCIQYMT 362 Query: 353 AVPLLFGRLTAADYEDEV-AQDKRIDALREKIVCYEDPAFTADYHDPEKRAIGNAITVEF 411 AVPL FG L A YED+ A ID LR+K+V EDP +T +Y + +KR+I NA+ V F Sbjct: 363 AVPLAFGTLVAEQYEDQFHAAHPIIDELRKKMVIVEDPRYTREYLEADKRSIANALQVFF 422 Query: 412 TDGSRFGEVVVEYPIGHARRRADGIPKLIEKFKINLARQFPTRQQQRILDVSLDRARLEQ 471 DGS G+VVVEYPIGH RRRA+GIP L +KFK NLA +F ++ +I + D+A+LE Sbjct: 423 KDGSSTGQVVVEYPIGHRRRRAEGIPLLEDKFKANLATRFTAQRSAQIFALCQDQAKLEA 482 Query: 472 MPVNEYLDLYVI 483 PVN ++DL+VI Sbjct: 483 TPVNRFMDLFVI 494 Lambda K H 0.321 0.136 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 658 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 494 Length adjustment: 34 Effective length of query: 449 Effective length of database: 460 Effective search space: 206540 Effective search space used: 206540 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory