Align Putative PTS system glucosamine-specific EIICBA component; EC 2.7.1.193 (characterized)
to candidate AO353_04465 AO353_04465 PTS N-acetyl-D-glucosamine transporter
Query= SwissProt::P39816 (631 letters) >FitnessBrowser__pseudo3_N2E3:AO353_04465 Length = 571 Score = 438 bits (1126), Expect = e-127 Identities = 233/494 (47%), Positives = 320/494 (64%), Gaps = 20/494 (4%) Query: 1 MFKKAFQILQQLGRALMTPVAVLPAAGLLLRFGDKDLLNIPIIKDAGGVVFDNLPLIFAV 60 M++ + LQ+LGRALM P+A+LP AGLLLR GD DLLNI II DAG V+F NL LIFA+ Sbjct: 1 MYQLFIEGLQRLGRALMLPIAILPIAGLLLRLGDTDLLNIAIIHDAGQVIFANLALIFAI 60 Query: 61 GVAIGLA-GGEGVAGLAAVIGYLILTVTLDNMGKLLGLQPPYEGAEHLIDMGVFGGIIIG 119 G+A+G A G AGLA IGYL++ TL K+L I+MG+ GII G Sbjct: 61 GIAVGFARDNNGTAGLAGAIGYLVMVSTL----KVLDAS---------INMGMLAGIISG 107 Query: 120 LLAAYLYKRFSSIELHPVLGFFSGKRFVPIITSVSSLVIGVIFSFVWPLIQNGINAASSL 179 L+A LY RF I+L L FF G+RFVPI T S++ +GVIF +WP IQ+GIN+ L Sbjct: 108 LMAGALYNRFKDIKLPEYLAFFGGRRFVPIATGFSAVGLGVIFGLIWPPIQHGINSFGQL 167 Query: 180 IADS-TVGLFFYATIYRLLIPFGLHHIFYTPFYFMMGEYTDPSTGNTVTGDLTRFFAGDP 238 + +S ++G F + RLLI GLHHI +F+ G +TDP+TG VTGDL R+FAGDP Sbjct: 168 LLESGSIGAFVFGVFNRLLIVTGLHHILNNMAWFIFGSFTDPTTGAIVTGDLARYFAGDP 227 Query: 239 TAGRFMMGDFPYMIFCLPAVALAIIHTARPEKKKMISGVMISAALTSMLTGITEPVEFSF 298 G+FM G FP MIF LPA LA+ A PE++K++ G+ +S ALTS LTG+TEP+EF+F Sbjct: 228 KGGQFMTGMFPMMIFGLPAACLAMYRNALPERRKVMGGIFLSMALTSFLTGVTEPIEFAF 287 Query: 299 LFVAPVLYLINSILAGVIFVVCDLFHVRHGYTFSGGGIDYVLNYGLSTNGWVVIPVGIVF 358 +F+AP+LYL++ +L G+ + + ++ G+TFSGG ID L +G STNGW+V PVG+ + Sbjct: 288 MFLAPLLYLLHVLLTGMAMAITNALNIHLGFTFSGGAIDMALGWGKSTNGWLVFPVGLAY 347 Query: 359 AFIYYYLFRFAILKWNLKTPGRETDEDGQNEEKAPVAKDQLAFHVLQALGGQQNIANLDA 418 A IYY +F F I ++NLKTPGRE G EK ++++Q A +QALGG +N+ + A Sbjct: 348 AVIYYVVFDFCIRRFNLKTPGREGVVVG---EKVVLSENQRAGAYIQALGGAENLITVGA 404 Query: 419 CITRLRVTVHQPSQVCKDELKRLGAVGVLE--VNNNFQAIFGTKSDALKDDIKTIMAGGV 476 C TRLR+ + ++ ELK LGA+ V+ + Q + G +D++ D+I+ M Sbjct: 405 CTTRLRLEMVDRNKASDSELKALGAMAVVRPGKGGSLQVVVGPLADSIADEIRQAMPTAG 464 Query: 477 PATAAALDTVTDKP 490 A AA+ + P Sbjct: 465 SALVAAVVVTEEAP 478 Lambda K H 0.324 0.142 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 915 Number of extensions: 50 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 631 Length of database: 571 Length adjustment: 37 Effective length of query: 594 Effective length of database: 534 Effective search space: 317196 Effective search space used: 317196 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (22.0 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory