Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate AO353_28230 AO353_28230 succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >lcl|FitnessBrowser__pseudo3_N2E3:AO353_28230 AO353_28230 succinate-semialdehyde dehydrogenase Length = 485 Score = 348 bits (893), Expect = e-100 Identities = 191/463 (41%), Positives = 266/463 (57%), Gaps = 1/463 (0%) Query: 13 IDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHERAA 72 IDG+W+ A + T+DV++PA G+ + RV + RA+ AA+ + AWR PA ERAA Sbjct: 18 IDGQWIGADNAATLDVIDPANGQLLARVPAMQGTETRRAIDAAEKAWPAWRARPAAERAA 77 Query: 73 TMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVPPR 132 + + + + D +A +MT EQGKPL EA+ E+ A ++WFA+E RRVYG +P Sbjct: 78 LLERWYQAMIDNLDDLALIMTCEQGKPLNEAKGEIRYGAGFVKWFAEEARRVYGETIPAP 137 Query: 133 NLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAALLR 192 + + +K+PVG AA TPWNFP + RK + ALA GC +VK + TP S AL Sbjct: 138 SGDRRLLTLKQPVGVCAAITPWNFPNAMITRKCAPALAAGCPIIVKPSDLTPLSALALAV 197 Query: 193 AFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKRATM 252 G+PAGV ++ G PA I L +P +RK++FTGST VG+ L + H+KR ++ Sbjct: 198 LAERVGIPAGVFNVLTGMPAGIGEELTGNPSVRKISFTGSTAVGRLLMRQSAEHIKRLSL 257 Query: 253 ELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVKHAE 312 ELGG+AP IV +DAD+ AV +KFRNAGQ C+ R LV + I + F + LV+ Sbjct: 258 ELGGNAPFIVFDDADLEQAVAGIMLSKFRNAGQTCVCANRILVQDGIYERFAQRLVEEVG 317 Query: 313 GLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPTVIA 372 LKVGNGL+ T+G L NP ++ +A ID+A GA + GG G + F PTV+ Sbjct: 318 KLKVGNGLDADVTIGPLINPAAVSKVARHIDDALSQGARLLCGGIPEG-DSQFVQPTVLG 376 Query: 373 NVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQRLE 432 + + N E FGPVA + F + EA+A AN P+GL Y FT+ + LE Sbjct: 377 DAHAGMLLANEETFGPVAPLMRFTEEAEALALANATPYGLGAYYFTQDLRRSWRFGEALE 436 Query: 433 VGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKS 475 GM+ +N PFGG+K SG G EG L+ YL K+ Sbjct: 437 FGMVGLNTGIISMEVAPFGGIKQSGLGREGSKYGLDEYLEVKA 479 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 665 Number of extensions: 33 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 485 Length adjustment: 34 Effective length of query: 447 Effective length of database: 451 Effective search space: 201597 Effective search space used: 201597 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory