Align phosphogluconate dehydratase (EC 4.2.1.12) (characterized)
to candidate AO353_08345 AO353_08345 dihydroxy-acid dehydratase
Query= BRENDA::Q1PAG1 (608 letters) >FitnessBrowser__pseudo3_N2E3:AO353_08345 Length = 613 Score = 215 bits (547), Expect = 5e-60 Identities = 166/534 (31%), Positives = 260/534 (48%), Gaps = 40/534 (7%) Query: 68 VAIVSSYNDMLSAHQPYEHFPEQIKKALREMGSVGQFAGGTPAMCDGVTQGEAGMELSLP 127 +AI +S+ + H + + + + + G V + T A+ DG+ G GM SLP Sbjct: 37 IAIANSFTQFVPGHVHLKDLGQLVAREIERAGGVAK-EFNTIAVDDGIAMGHDGMLYSLP 95 Query: 128 SREVIALSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMPSGIS- 186 SRE+IA S ++ + DA + + CDKI PG++M ALR ++P IFV GGPM +G + Sbjct: 96 SREIIADSVEYMVNAHCADAIVCISNCDKITPGMLMAALRL-NIPVIFVSGGPMEAGKTK 154 Query: 187 ----NKEKADVRQRYAEGKATREELLESEMKSYHSPGTCTFYGTANTNQLLMEVMGLHLP 242 + D A+ A+ E++ E E + + G+C+ TAN+ L E +GL LP Sbjct: 155 LASHGLDLVDAMVIAADSSASDEKVAEYERSACPTCGSCSGMFTANSMNCLTEALGLALP 214 Query: 243 GASFVNPYTPLRDALTHEAAQQVTRLTK----QSGNFTPIGEIVDERSLVNSIVALHATG 298 G R+ L +A + + L K ++ I + ++ N++ A G Sbjct: 215 GNGSTLATHSDREQLFLQAGRTIVELCKRYYGENDESVLPRNIANFKAFENAMTLDIAMG 274 Query: 299 GSTNHTLHMPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPN-GKADINHFQAAGGMAFLI 357 GSTN LH+ A AQ A I +D+ LS VP L V PN K + AGG+ ++ Sbjct: 275 GSTNTILHLLAAAQEAEIDFDLRDIDRLSRHVPQLCKVAPNIQKYHMEDVHRAGGIFSIL 334 Query: 358 RELLEAGLLHEDVNTVAGR----GLSRYTQEPFLDNG-KLVWRDGPI------------- 399 L GLLH D+ TV + G++++ D ++ GP Sbjct: 335 GSLARGGLLHTDLPTVHSKTMAEGIAKWDITQTTDEAVHHFFKAGPAGIPTQTAFSQSTR 394 Query: 400 -ESLDEN----ILRPVARAFSPEGGLRVMEGNLGRG--VMKVSAVALQHQIVEAPAVVFQ 452 E+LD++ +R V A+S EGGL V+ GN+ V+K + V + E A +F+ Sbjct: 395 WETLDDDRENGCIRSVEHAYSQEGGLAVLYGNIALDGCVVKTAGVDESIHVFEGNAKIFE 454 Query: 453 DQQDLADAFKAGELEKDFVAVMRFQGPRSN-GMPELHKMTPFLGVLQDRGFKVALVTDGR 511 Q A E+++ + ++R++GP+ GM E+ T +L + G AL+TDGR Sbjct: 455 SQDSAVRGILADEVKEGDIVIIRYEGPKGGPGMQEMLYPTSYL-KSKGLGKACALLTDGR 513 Query: 512 MSGASGKIPAAIHVSPEAQVGGALARVRDGDIIRVDGVKGTLELKVDADEFAAR 565 SG + + H SPEA GGA+ VRDGD + +D ++ L V +E AAR Sbjct: 514 FSGGTSGLSIG-HASPEAAAGGAIGLVRDGDKVLIDIPNRSINLLVSDEELAAR 566 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 894 Number of extensions: 54 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 613 Length adjustment: 37 Effective length of query: 571 Effective length of database: 576 Effective search space: 328896 Effective search space used: 328896 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory