Align L-lysine transport protein (characterized)
to candidate AO353_03465 AO353_03465 arginine-ornithine antiporter
Query= CharProtDB::CH_019644 (501 letters) >FitnessBrowser__pseudo3_N2E3:AO353_03465 Length = 475 Score = 429 bits (1103), Expect = e-124 Identities = 219/487 (44%), Positives = 319/487 (65%), Gaps = 16/487 (3%) Query: 16 TSRTVSIRTLIALIIGSTVGAGIFSIPQNIGSVAGPGAMLIGWLIAGVGMLSVAFVFHVL 75 +S + + L+AL++GS +G GIFS+PQN+ + A GA+LIGW+I VGML++AFVF L Sbjct: 4 SSGKLRLGALVALVVGSMIGGGIFSLPQNMAASADVGAVLIGWVITAVGMLTLAFVFQTL 63 Query: 76 ARRKPHLDSGVYAYARVGLGDYVGFSSAWGYWLGSVIAQVGYATLFFSTLGHYVPLFSQD 135 A RKP LD GVYAYA+ G GDY+GFSSAWGYW+ + + VGY L FSTLG++ PLF + Sbjct: 64 ANRKPDLDGGVYAYAKAGFGDYMGFSSAWGYWISAWLGNVGYFVLLFSTLGYFFPLFGEG 123 Query: 136 HPFVSALAVSALTWLVFGVVSRGISQAAFLTTVTTVAKILPLLCFIILVAFLGFSWEKFT 195 + + + S L W V +V RGI +AAF+ VTTVAK++PL+ F +L+A F + FT Sbjct: 124 NTPAAVIGASLLLWAVHFLVLRGIKEAAFINLVTTVAKVVPLVLF-VLIAIFAFKLDIFT 182 Query: 196 VDLWA-RDGGVGSIFDQVRGIMVYTVWVFIGIEGASVYSRQARSRSDVSRATVIGFVAVL 254 D+W ++ +GS+ +QVR +M+ TVWVFIGIEGAS++S +A RSDV +ATVIGF+ VL Sbjct: 183 ADIWGLKNPDLGSVMNQVRNMMLVTVWVFIGIEGASIFSARAEKRSDVGKATVIGFITVL 242 Query: 255 LLLVSISSLSFGVLTQQELAALPDNSMASVLEAVVGPWGAALISLGLCLSVLGAYVSWQM 314 L L+ ++ LS G++TQ LA L + SMA+VLE VVG WGA LIS+GL +S+LGA +SW + Sbjct: 243 LFLMLVNVLSLGIMTQPALAKLQNPSMAAVLEHVVGHWGAVLISVGLVISLLGALLSWVL 302 Query: 315 LCAEPLALMAMDGLIPSKIGAINSRGAAWMAQLISTIVIQIFIIIFFLNETTYVSMVQLA 374 LCAE + A D +P + NS+ A ++ ++QIF++I + +TY+S++ LA Sbjct: 303 LCAEIMFAAAKDHTMPEFLRKENSKQVPVNALWLTNAMVQIFLVITLFSASTYLSLIYLA 362 Query: 375 TNLYLVPYLFSAFYLVMLATRGKGITHPHAGTRFDDSGPEISRRENRKHLIVGLVATVYS 434 T++ LVPYL+SA Y ++LA RG+ E + E +K L++G +A +Y+ Sbjct: 363 TSMILVPYLWSAAYALLLAVRGESY--------------ENALAERKKDLVIGAIALIYA 408 Query: 435 VWLFYAAEPQFVLFGAMAMLPGLIPYVWTRIYRGEQVFNRFEIGVVVVLVVAASAGVIGL 494 +WL YA +++L A+ PG I + + G+ VF E + +V+ A GL Sbjct: 409 IWLLYAGGIKYLLLSALLYAPGAILFAKAKRELGKAVFTNVEKLIFTAVVIGALVAAYGL 468 Query: 495 VNGSLSL 501 +G L+L Sbjct: 469 YDGFLTL 475 Lambda K H 0.327 0.139 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 713 Number of extensions: 37 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 501 Length of database: 475 Length adjustment: 34 Effective length of query: 467 Effective length of database: 441 Effective search space: 205947 Effective search space used: 205947 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory