Align Aromatic amino acid transporter AroP (characterized, see rationale)
to candidate AO353_05965 AO353_05965 aromatic amino acid transporter
Query= uniprot:A0A2Z5MFR8 (461 letters) >lcl|FitnessBrowser__pseudo3_N2E3:AO353_05965 AO353_05965 aromatic amino acid transporter Length = 466 Score = 634 bits (1634), Expect = 0.0 Identities = 309/460 (67%), Positives = 370/460 (80%), Gaps = 9/460 (1%) Query: 2 DNALQQDGLKRGLKNRHIQLIALGGAIGTGLFLGSASVLQAAGPSMILGYAIGGVIAFMI 61 D LQQ LKRGLKNRHIQLIALGGAIGTGLFLGSA VL++AGPSMILGYAI G IAF+I Sbjct: 3 DEQLQQGVLKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLI 62 Query: 62 MRQLGEMVAQEPVAGSFSHFAYKYWGDFPGFLSGWNYWVLYVLVSMAELTAVGTYVHYWW 121 MRQLGEM+ +EPVAGSFSHFA+ YWG F GFLSGWNYWVLYVLV MAELTAVG YV +WW Sbjct: 63 MRQLGEMIVEEPVAGSFSHFAHNYWGSFAGFLSGWNYWVLYVLVGMAELTAVGKYVQFWW 122 Query: 122 PGVPTWVSALVCFAGINAINLANVKAYGETEFWFAIIKVVAVIGMILFGGYLLVSGHGGP 181 P VPTWVSA V F +N IN NVK +GE EFWFAIIKVVA+IGMI G Y+LVSG GGP Sbjct: 123 PEVPTWVSAAVFFVLVNLINTMNVKVFGEMEFWFAIIKVVAIIGMIALGCYMLVSGTGGP 182 Query: 182 QASISNLWSHGGFFPHGFHGLFTMLAVIMFSFGGLELIGITAAEADEPQKSIPKAVNQVI 241 QAS+SNLWSHGGFFP+G +GL +A IMFSFGGLEL+GITAAEA EP+K IPKA+NQV+ Sbjct: 183 QASVSNLWSHGGFFPNGTNGLLMAMAFIMFSFGGLELVGITAAEASEPRKVIPKAINQVV 242 Query: 242 YRILIFYICSLAVLLSLYPWNEV---------AAGGSPFVMIFSQIGSTLTANVLNVVVL 292 YR+LIFY+ +L VLLSLYPW+++ A GSPFV IF+ IGS A +LN VVL Sbjct: 243 YRVLIFYVGALTVLLSLYPWDQLLQTLGASGDAYSGSPFVQIFALIGSNTAAQILNFVVL 302 Query: 293 TAALSVYNSGVYANSRMLYGLAEQGNAPRALMKVDRRGVPYMAIGLSALATFTCVIVNYL 352 TAALSVYNSGVY NSRMLYGLAEQG+AP++LMK++++GVP A+G+SAL T CV+VNY+ Sbjct: 303 TAALSVYNSGVYCNSRMLYGLAEQGDAPKSLMKLNKQGVPLRALGISALITMLCVVVNYV 362 Query: 353 IPAEALGLLMALVVAALVLNWALISLTHLKSRRAMVAAGETLVFKSFWFPVSNWICLAFM 412 P EAL LL ALVVA+L++NWA+ISLTHLK R+AM G FK+FW P +N++CLAFM Sbjct: 363 APNEALELLFALVVASLMINWAMISLTHLKFRKAMGQRGIVPGFKAFWSPYTNYLCLAFM 422 Query: 413 ALILVILAMTPGLSVSVLLVPLWLVVMWAGYAFKRRRAAA 452 A+I+ ++ + PG+ SV +P+W+++++ Y + R A Sbjct: 423 AMIIYVMLLIPGVRASVYAIPVWVLILFVFYRIRVARTRA 462 Lambda K H 0.327 0.140 0.440 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 660 Number of extensions: 25 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 461 Length of database: 466 Length adjustment: 33 Effective length of query: 428 Effective length of database: 433 Effective search space: 185324 Effective search space used: 185324 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory