Align Aromatic amino acid transport protein AroP (characterized, see rationale)
to candidate AO353_05965 AO353_05965 aromatic amino acid transporter
Query= uniprot:A0A0C4YP23 (465 letters) >lcl|FitnessBrowser__pseudo3_N2E3:AO353_05965 AO353_05965 aromatic amino acid transporter Length = 466 Score = 634 bits (1634), Expect = 0.0 Identities = 310/452 (68%), Positives = 366/452 (80%), Gaps = 9/452 (1%) Query: 13 LKRGLKNRHIQLIALGGAIGTGLFLGIAQTIKMAGPSVLLGYAVAGIIAFFIMRQLGEMV 72 LKRGLKNRHIQLIALGGAIGTGLFLG A +K AGPS++LGYA+AG IAF IMRQLGEM+ Sbjct: 11 LKRGLKNRHIQLIALGGAIGTGLFLGSAGVLKSAGPSMILGYAIAGFIAFLIMRQLGEMI 70 Query: 73 VDEPVAGSFSHFANKYCGSFAGFMSGWNYWVLYILVSMAELSAVGIYVQYWWPHIPTWAS 132 V+EPVAGSFSHFA+ Y GSFAGF+SGWNYWVLY+LV MAEL+AVG YVQ+WWP +PTW S Sbjct: 71 VEEPVAGSFSHFAHNYWGSFAGFLSGWNYWVLYVLVGMAELTAVGKYVQFWWPEVPTWVS 130 Query: 133 ALGFFLLINAINLTSVKSFGEMEFWFSIVKVLAIVGMIVFGGYLLASGTAGPQASVSNLW 192 A FF+L+N IN +VK FGEMEFWF+I+KV+AI+GMI G Y+L SGT GPQASVSNLW Sbjct: 131 AAVFFVLVNLINTMNVKVFGEMEFWFAIIKVVAIIGMIALGCYMLVSGTGGPQASVSNLW 190 Query: 193 QHGGFFPNGISGLVMAMAVIMFSFGGLELVGITAAEADEPEKTIPKATNQVIYRILIFYV 252 HGGFFPNG +GL+MAMA IMFSFGGLELVGITAAEA EP K IPKA NQV+YR+LIFYV Sbjct: 191 SHGGFFPNGTNGLLMAMAFIMFSFGGLELVGITAAEASEPRKVIPKAINQVVYRVLIFYV 250 Query: 253 GALGVLLSLYPWEKVVT---------GGSPFVLIFHAMNSDIVATVLNAVVLTAALSVYN 303 GAL VLLSLYPW++++ GSPFV IF + S+ A +LN VVLTAALSVYN Sbjct: 251 GALTVLLSLYPWDQLLQTLGASGDAYSGSPFVQIFALIGSNTAAQILNFVVLTAALSVYN 310 Query: 304 SGVYCNSRMLFGLAKQGNAPKALLKVNKRGIPLAALGVSALATAACVVINYFMPGEAFEL 363 SGVYCNSRML+GLA+QG+APK+L+K+NK+G+PL ALG+SAL T CVV+NY P EA EL Sbjct: 311 SGVYCNSRMLYGLAEQGDAPKSLMKLNKQGVPLRALGISALITMLCVVVNYVAPNEALEL 370 Query: 364 LMGLVVSALIINWAMISIIHLKFRRDKRAAGQETRFKSLGYPLTNYVCLAFLAGILYVMY 423 L LVV++L+INWAMIS+ HLKFR+ G FK+ P TNY+CLAF+A I+YVM Sbjct: 371 LFALVVASLMINWAMISLTHLKFRKAMGQRGIVPGFKAFWSPYTNYLCLAFMAMIIYVML 430 Query: 424 LTPGLRISVYLIPAWLAVLGLSYRLRQKQKRA 455 L PG+R SVY IP W+ +L + YR+R + RA Sbjct: 431 LIPGVRASVYAIPVWVLILFVFYRIRVARTRA 462 Lambda K H 0.326 0.140 0.426 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 739 Number of extensions: 29 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 465 Length of database: 466 Length adjustment: 33 Effective length of query: 432 Effective length of database: 433 Effective search space: 187056 Effective search space used: 187056 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory