Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate AO353_24475 AO353_24475 aldehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__pseudo3_N2E3:AO353_24475 Length = 477 Score = 520 bits (1339), Expect = e-152 Identities = 255/471 (54%), Positives = 334/471 (70%) Query: 11 LLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHER 70 L I G W + ++I V+NPAT + IG +A A +AD++ A AA+ GF W++V A ER Sbjct: 6 LFIGGVWRNTHPDESIPVINPATEEQIGLIAKASLADIEDAAIAAEKGFATWKQVSALER 65 Query: 71 AATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIVP 130 A M KAA+L+RERA+ IA ++T E GKPL EA EV + AD I+W A+EGRR YGR++P Sbjct: 66 ATIMHKAASLIRERAENIALILTTEHGKPLGEAMGEVAATADTIDWHAEEGRRAYGRVIP 125 Query: 131 PRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAAL 190 R LG Q V EP+GPV F PWNFP+ Q V+K++ ALA GCS ++K E P L Sbjct: 126 SRALGVHQFTVMEPIGPVVGFAPWNFPLIQAVKKVAGALAAGCSIILKGATEAPTCAVEL 185 Query: 191 LRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKRA 250 ++AF DAGV G + L++GD +IS +LI HP IRKVTFTGSTPVGK+LASLAGLHMKR+ Sbjct: 186 VKAFADAGVSPGAVNLLFGDSGQISEHLIAHPSIRKVTFTGSTPVGKKLASLAGLHMKRS 245 Query: 251 TMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVKH 310 TMELGGHAPVIV +DAD+A AVK + AK+RNAGQVC+SPTRFLVH+ + DEF V+ Sbjct: 246 TMELGGHAPVIVMDDADIATAVKISVAAKYRNAGQVCVSPTRFLVHSKVFDEFVSRFVEG 305 Query: 311 AEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPTV 370 A + VG+GL+ T+G +A+ RL A ++ +A GA +ETGG RIG +G FF PTV Sbjct: 306 ARAVMVGDGLDPNVTMGPMAHAGRLKATEELVADAVSHGAKLETGGNRIGHKGYFFEPTV 365 Query: 371 IANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQR 430 + NVP+ A +EPFGP+A I FD ++EAI EANRLP+GL+ YA+TRS ++ + L Sbjct: 366 LTNVPVTARAMIDEPFGPIALINSFDDIDEAIKEANRLPYGLSAYAYTRSLSSANKLFNG 425 Query: 431 LEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTKSVTVMAV 481 +E G + IN + PE PFGGVKDSGYG+EGGP AL+ ++ TK V++ +V Sbjct: 426 IESGAISINHHSVALPEHPFGGVKDSGYGTEGGPGALDAFMTTKFVSLASV 476 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 660 Number of extensions: 22 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 477 Length adjustment: 34 Effective length of query: 447 Effective length of database: 443 Effective search space: 198021 Effective search space used: 198021 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory