GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fruI in Pseudomonas fluorescens FW300-N2E3

Align Fructose-specific PTS system, I, HPr, and IIA components (characterized)
to candidate AO353_05485 AO353_05485 PTS fructose transporter subunit IIA

Query= reanno::pseudo3_N2E3:AO353_05485
         (953 letters)



>FitnessBrowser__pseudo3_N2E3:AO353_05485
          Length = 953

 Score = 1827 bits (4732), Expect = 0.0
 Identities = 953/953 (100%), Positives = 953/953 (100%)

Query: 1   MLELTIEQISMGQSAVDKAAALHLLADTLVNDGLVAEGYLSGLQAREAQGSTFLGQGIAI 60
           MLELTIEQISMGQSAVDKAAALHLLADTLVNDGLVAEGYLSGLQAREAQGSTFLGQGIAI
Sbjct: 1   MLELTIEQISMGQSAVDKAAALHLLADTLVNDGLVAEGYLSGLQAREAQGSTFLGQGIAI 60

Query: 61  PHGTPDTRDLVHTTGVRLLQFPEGVDWGDGHIVYLAIGIAAKSDEHLRLLQLLTRALGET 120
           PHGTPDTRDLVHTTGVRLLQFPEGVDWGDGHIVYLAIGIAAKSDEHLRLLQLLTRALGET
Sbjct: 61  PHGTPDTRDLVHTTGVRLLQFPEGVDWGDGHIVYLAIGIAAKSDEHLRLLQLLTRALGET 120

Query: 121 DLGQALRRASSAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS 180
           DLGQALRRASSAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS
Sbjct: 121 DLGQALRRASSAEALLKLLQGAPQELALDAQMIGLGVSADDFEELVWRGARLLRQADCVS 180

Query: 181 NGFSAVLQQVEALPLGDGLWWLHSEQTVKRPGLAFVTPDKPIRYLGQPLSGLFCLASLGE 240
           NGFSAVLQQVEALPLGDGLWWLHSEQTVKRPGLAFVTPDKPIRYLGQPLSGLFCLASLGE
Sbjct: 181 NGFSAVLQQVEALPLGDGLWWLHSEQTVKRPGLAFVTPDKPIRYLGQPLSGLFCLASLGE 240

Query: 241 AHQALLERLCALLIEGRGHELGRATSRRAVLEVLGGELPADWPSARIALANAHGLHARPA 300
           AHQALLERLCALLIEGRGHELGRATSRRAVLEVLGGELPADWPSARIALANAHGLHARPA
Sbjct: 241 AHQALLERLCALLIEGRGHELGRATSRRAVLEVLGGELPADWPSARIALANAHGLHARPA 300

Query: 301 KILAQLAKSFEGEIRIRIVDGQDSAVSVKSLSKLLSLGARRGQVLELIAEPSIAADALPA 360
           KILAQLAKSFEGEIRIRIVDGQDSAVSVKSLSKLLSLGARRGQVLELIAEPSIAADALPA
Sbjct: 301 KILAQLAKSFEGEIRIRIVDGQDSAVSVKSLSKLLSLGARRGQVLELIAEPSIAADALPA 360

Query: 361 LLRAIEEGLGEDIEPLPTVSAQSEVIDEITDVVVAPASGCVIQAVAAAPGIAIGPAHIQV 420
           LLRAIEEGLGEDIEPLPTVSAQSEVIDEITDVVVAPASGCVIQAVAAAPGIAIGPAHIQV
Sbjct: 361 LLRAIEEGLGEDIEPLPTVSAQSEVIDEITDVVVAPASGCVIQAVAAAPGIAIGPAHIQV 420

Query: 421 LQAIDYPLRGESTAIERERLKTSLADVRRDIEGLIQRSKAKAIREIFITHQEMLDDPELT 480
           LQAIDYPLRGESTAIERERLKTSLADVRRDIEGLIQRSKAKAIREIFITHQEMLDDPELT
Sbjct: 421 LQAIDYPLRGESTAIERERLKTSLADVRRDIEGLIQRSKAKAIREIFITHQEMLDDPELT 480

Query: 481 DEVDTRLKQGESAEAAWMAVIDAAARQQESLQDALLAERAADLRDIGRRVLAQLCGIETP 540
           DEVDTRLKQGESAEAAWMAVIDAAARQQESLQDALLAERAADLRDIGRRVLAQLCGIETP
Sbjct: 481 DEVDTRLKQGESAEAAWMAVIDAAARQQESLQDALLAERAADLRDIGRRVLAQLCGIETP 540

Query: 541 SEPDQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAV 600
           SEPDQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAV
Sbjct: 541 SEPDQPYILVMDEVGPSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAV 600

Query: 601 LRLASGTPLLLDGQRGRLHVDADAATLQRAAEERDNREQRLQAAAAQRHQPALTTDGHAV 660
           LRLASGTPLLLDGQRGRLHVDADAATLQRAAEERDNREQRLQAAAAQRHQPALTTDGHAV
Sbjct: 601 LRLASGTPLLLDGQRGRLHVDADAATLQRAAEERDNREQRLQAAAAQRHQPALTTDGHAV 660

Query: 661 EVFANIGESAGVVSAVEQGAEGIGLLRTELIFMAHQQAPDEATQEVEYRRVLDGLAGRPL 720
           EVFANIGESAGVVSAVEQGAEGIGLLRTELIFMAHQQAPDEATQEVEYRRVLDGLAGRPL
Sbjct: 661 EVFANIGESAGVVSAVEQGAEGIGLLRTELIFMAHQQAPDEATQEVEYRRVLDGLAGRPL 720

Query: 721 VVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQIMEAQLRALLRAADNRPLRIM 780
           VVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQIMEAQLRALLRAADNRPLRIM
Sbjct: 721 VVRTLDVGGDKPLPYWPIAKEENPFLGVRGIRLTLQRPQIMEAQLRALLRAADNRPLRIM 780

Query: 781 FPMVGSVDEWRQARDMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTND 840
           FPMVGSVDEWRQARDMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTND
Sbjct: 781 FPMVGSVDEWRQARDMTERLRLEIPVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTND 840

Query: 841 LTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVL 900
           LTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVL
Sbjct: 841 LTQYTLAIDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVL 900

Query: 901 VGLGVDELSVSARSIGEVKARVRELSLAQVKHLAQLALAVGSANEVRALVEAL 953
           VGLGVDELSVSARSIGEVKARVRELSLAQVKHLAQLALAVGSANEVRALVEAL
Sbjct: 901 VGLGVDELSVSARSIGEVKARVRELSLAQVKHLAQLALAVGSANEVRALVEAL 953


Lambda     K      H
   0.319    0.135    0.383 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2482
Number of extensions: 68
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 953
Length of database: 953
Length adjustment: 44
Effective length of query: 909
Effective length of database: 909
Effective search space:   826281
Effective search space used:   826281
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory