GapMind for catabolism of small carbon sources

 

Aligments for a candidate for acnD in Pseudomonas fluorescens FW300-N2E3

Align 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming) (EC 4.2.1.117) (characterized)
to candidate AO353_00565 AO353_00565 aconitate hydratase

Query= BRENDA::Q8EJW3
         (867 letters)



>lcl|FitnessBrowser__pseudo3_N2E3:AO353_00565 AO353_00565 aconitate
           hydratase
          Length = 916

 Score =  722 bits (1863), Expect = 0.0
 Identities = 409/904 (45%), Positives = 556/904 (61%), Gaps = 68/904 (7%)

Query: 20  YFDTREAIEAIAPGAYAKLPYTSRVLAENLVRRCEPEMLT-ASLKQII----ESKQELDF 74
           YF   EA +++  G   KLP + +VL ENL+R  + + +T A LK +     E + + + 
Sbjct: 22  YFSLPEAAKSL--GDLDKLPMSLKVLLENLLRWEDEKTVTGADLKALAAWLKERRSDREI 79

Query: 75  PWFPARVVCHDILGQTALVDLAGLRDAIAAKGGDPAQVNPVVPTQLIVDHSLAVEYGGFD 134
            + PARV+  D  G  A+VDLA +R A+A  GGDP ++NP+ P  L++DHS+ V+     
Sbjct: 80  QYRPARVLMQDFTGVPAVVDLAAMRAAMAKAGGDPQRINPLSPVDLVIDHSVMVDKFA-S 138

Query: 135 KDAFAKNRAIEDRRNEDRFHFINWTQKAFKNIDVIPQGNGIMHQINLERMSPVIHARNG- 193
             AF +N  IE +RN +R+ F+ W Q AF N  V+P G GI HQ+NLE +   +  ++  
Sbjct: 139 STAFTQNVDIEMQRNGERYAFLRWGQSAFDNFSVVPPGTGICHQVNLEYLGRTVWTKDED 198

Query: 194 ---VAFPDTLVGTDSHTPHVDALGVIAIGVGGLEAESVMLGRASYMRLPDIIGVELTGKP 250
               AFPDTLVGTDSHT  ++ LGV+  GVGG+EAE+ MLG+   M +P++IG +LTGK 
Sbjct: 199 DRTYAFPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPEVIGFKLTGKL 258

Query: 251 QPGITATDIVLALTEFLRAQKVVSSYLEFFGEGAEALTLGDRATISNMTPEFGATAAMFY 310
           + GITATD+VL +T+ LR + VV  ++EF+G+G   L L DRATI+NM PE+GAT   F 
Sbjct: 259 KEGITATDLVLTVTQMLRKKGVVGKFVEFYGDGLAELPLADRATIANMAPEYGATCGFFP 318

Query: 311 IDQQTLDYLTLTGREAEQVKLVETYAKTAGLWSDDLKQAVYPRTLHFDLSSVVRTIAGPS 370
           +D+ TL+YL L+GR +  VKLVE Y KT GLW    ++ V+  +L  D+SSV  ++AGP 
Sbjct: 319 VDEVTLEYLRLSGRPSAVVKLVEAYCKTQGLWRLPGQEPVFTDSLALDMSSVEASLAGPK 378

Query: 371 NPHARV---------------------PTSE----LAARGISG--------------EVE 391
            P  RV                     PTS+    L + G  G              E E
Sbjct: 379 RPQDRVSLPNVAQAFTDFLGLQVKPARPTSKEEGRLESEGGGGVAVGNADLVSEADYEYE 438

Query: 392 NEPGLMPDGAVIIAAITSCTNTSNPRNVIAAGLLARNANAKGLTRKPWVKTSLAPGSKAV 451
            +   + +GAV+IAAITSCTNTSNP  ++AAGL+A+ A  KGL RKPWVK+SLAPGSK V
Sbjct: 439 GQTYRLKNGAVVIAAITSCTNTSNPSVMMAAGLVAKKAVEKGLKRKPWVKSSLAPGSKVV 498

Query: 452 QLYLEEANLLPELESLGFGIVGFACTTCNGMSGALDPVIQQEVIDRDLYATAVLSGNRNF 511
             Y + A L   L+ LGF +VG+ CTTC G SG L   I++ +   DL   +VLSGNRNF
Sbjct: 499 TDYYKAAGLTQYLDELGFSLVGYGCTTCIGNSGPLLEPIEKAIQSSDLAVASVLSGNRNF 558

Query: 512 DGRIHPYAKQAFLASPPLVVAYAIAGTIRFDIEKDVLGLDKDGKPVRLINIWPSDAEI-D 570
           +GR+HP  K  +LASPPLVVAYA+AG++R DI  + LG  KDGKPV L +IWPS  EI D
Sbjct: 559 EGRVHPLVKTNWLASPPLVVAYALAGSVRMDISSEPLGEGKDGKPVYLRDIWPSSKEIAD 618

Query: 571 AVIAASVKPEQFRKVYEPMFDLSVDYGDKVSP---LYDWRPQSTYIRRPPYWE---GALA 624
           AV  A V    F K Y  +F     +     P    Y W+  STYI+ PP+++   G L 
Sbjct: 619 AV--AQVDTAMFHKEYAEVFAGDAQWQAIEVPQAATYVWQKDSTYIQHPPFFDDISGPLP 676

Query: 625 GERTLKGMRPLAVLGDNITTDHLSPSNAIMMDSAAGEYLHKMGLPEEDFNSYATHRGDHL 684
             + + G R LA+LGD++TTDH+SP+  I  DS AG YL + G+   DFNSY + RG+H 
Sbjct: 677 VIQDISGARILALLGDSVTTDHISPAGNIKADSPAGRYLREQGVEPRDFNSYGSRRGNHE 736

Query: 685 TAQRATFANPKLKNEMAIVDGKVKQGSLARIEPEGIVTRMWEAIETYMDRKQPLIIIAGA 744
              R TFAN +++NEM    G  + G+   I P G    +++A   Y     PL++IAG 
Sbjct: 737 VMMRGTFANIRIRNEML---GGEEGGNTLYI-PTGEKLAIYDAAMRYQAAGTPLVVIAGQ 792

Query: 745 DYGQGSSRDWAAKGVRLAGVEAIVAEGFERIHRTNLVGMGVLPLEFKAGENRATYGIDGT 804
           +YG GSSRDWAAKG  L GV+A++AE FERIHR+NLVGMGVLPL+FK  +NR +  + G 
Sbjct: 793 EYGTGSSRDWAAKGTNLLGVKAVIAESFERIHRSNLVGMGVLPLQFKLDQNRKSLNLTGK 852

Query: 805 EVFDVIG----SIAPRADLTVIITRKNGERVEVPVTCRLDTAEEVSIYEAGGVLQRFAQD 860
           E  D+ G     + PR +LT++ITR++G   +V V CR+DT  EV  ++AGG+L    + 
Sbjct: 853 ETLDIQGLTGVELTPRMNLTLVITREDGSSEKVEVLCRIDTLNEVEYFKAGGILHYVLRQ 912

Query: 861 FLES 864
            + S
Sbjct: 913 LIAS 916


Lambda     K      H
   0.318    0.136    0.397 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 1961
Number of extensions: 94
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 2
Length of query: 867
Length of database: 916
Length adjustment: 43
Effective length of query: 824
Effective length of database: 873
Effective search space:   719352
Effective search space used:   719352
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory