Align xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate AO353_08345 AO353_08345 dihydroxy-acid dehydratase
Query= BRENDA::P39358 (655 letters) >FitnessBrowser__pseudo3_N2E3:AO353_08345 Length = 613 Score = 199 bits (506), Expect = 3e-55 Identities = 169/544 (31%), Positives = 257/544 (47%), Gaps = 63/544 (11%) Query: 88 GHYEL-DIQMKAAAEVIKANH-ALPYAVYVSDPCDGRTQGTTGMFDSLPYRNDASMVMRR 145 GH L D+ A E+ +A A + D DG G GM SLP R + + Sbjct: 49 GHVHLKDLGQLVAREIERAGGVAKEFNTIAVD--DGIAMGHDGMLYSLPSREIIADSVEY 106 Query: 146 LIRSLPDAKAVIGVASCDKGLPATMMALAAQHNIATVLVPGGA-----TLPAKDGEDNGK 200 ++ + A A++ +++CDK P +MA A + NI + V GG T A G D Sbjct: 107 MVNA-HCADAIVCISNCDKITPGMLMA-ALRLNIPVIFVSGGPMEAGKTKLASHGLDLVD 164 Query: 201 VQTIGARFANGELSLQDARRAGCKACASSGGGCQFLGTAGTSQVVAEGLGLAIPHSALAP 260 I A + + + + R+ C C G C + TA + + E LGLA+P + Sbjct: 165 AMVIAADSSASDEKVAEYERSACPTC----GSCSGMFTANSMNCLTEALGLALPGNGSTL 220 Query: 261 SGEPVWREIARASARAALNLSQK-------GITTREILTDKAIENAMTVHAAFGGSTNLL 313 + ++ + R + L ++ + R I KA ENAMT+ A GGSTN + Sbjct: 221 ATHSDREQLFLQAGRTIVELCKRYYGENDESVLPRNIANFKAFENAMTLDIAMGGSTNTI 280 Query: 314 LHIPAIAHQAGCHIPTVDDWIRINKRVPRLVSVLPNGPVYHPTVNAFMAGGVPEVMLHLR 373 LH+ A A +A + D R+++ VP+L V PN YH + AGG+ ++ L Sbjct: 281 LHLLAAAQEAEIDF-DLRDIDRLSRHVPQLCKVAPNIQKYH-MEDVHRAGGIFSILGSLA 338 Query: 374 SLGLLHEDVMTVTGSTLKENLDWWEHSER----------------------RQRFKQLLL 411 GLLH D+ TV T+ E + W+ ++ Q + L Sbjct: 339 RGGLLHTDLPTVHSKTMAEGIAKWDITQTTDEAVHHFFKAGPAGIPTQTAFSQSTRWETL 398 Query: 412 DQEQINADEVIMSPQQAKARGLTSTITFPVGNIAPEGSVIKSTAIDPSMIDEQGIYYHKG 471 D ++ N I S + A ++ + + GNIA +G V+K+ +D S I+ +G Sbjct: 399 DDDRENG--CIRSVEHAYSQEGGLAVLY--GNIALDGCVVKTAGVDES------IHVFEG 448 Query: 472 VAKVYLSEKSAIYDIKHDKIKAGDILVIIGVGP-SGTGMEETYQVTSALKHLSYGKHVSL 530 AK++ S+ SA+ I D++K GDI++I GP G GM+E TS LK GK +L Sbjct: 449 NAKIFESQDSAVRGILADEVKEGDIVIIRYEGPKGGPGMQEMLYPTSYLKSKGLGKACAL 508 Query: 531 ITDARFSGVSTGACIGHVGPEALAGGPIGKLRTGDLIEIKIDCRELHGEVNFLGTRSDEQ 590 +TD RFSG ++G IGH PEA AGG IG +R GD + I I R ++ V SDE+ Sbjct: 509 LTDGRFSGGTSGLSIGHASPEAAAGGAIGLVRDGDKVLIDIPNRSINLLV------SDEE 562 Query: 591 LPSQ 594 L ++ Sbjct: 563 LAAR 566 Lambda K H 0.317 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 897 Number of extensions: 47 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 655 Length of database: 613 Length adjustment: 38 Effective length of query: 617 Effective length of database: 575 Effective search space: 354775 Effective search space used: 354775 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory