Align L-arabinose ABC transporter, ATP-binding protein AraG; EC 3.6.3.17 (characterized)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= CharProtDB::CH_014279 (504 letters) >lcl|FitnessBrowser__pseudo5_N2C3_1:AO356_28510 AO356_28510 xylose transporter Length = 518 Score = 343 bits (880), Expect = 8e-99 Identities = 198/501 (39%), Positives = 309/501 (61%), Gaps = 14/501 (2%) Query: 8 LSFRGIGKTFPGVKALTDISFDCYAGQVHALMGENGAGKSTLLKILSGNYAPTT--GSVV 65 L GI KTF GVKAL I G+ L GENGAGKSTL+K+LS Y T G ++ Sbjct: 6 LQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTWEGEII 65 Query: 66 INGQEMSFSDTTAALNAGVAIIYQELHLVPEMTVAENIYLG-QLPHKGGIVNRSLLNYEA 124 +GQ + + AG+ II+QEL LVP+++VAENI++G +L GG +N + + A Sbjct: 66 WDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPAMIHRA 125 Query: 125 GLQLKHLGM-DIDPDTPLKYLSIGQWQMVEIAKALARNAKIIAFDEPTSSLSAREIDNLF 183 ++ L + D++ P+ G Q+VEIAKAL + A+++ DEP+S+L+ EI+ L Sbjct: 126 EALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSEIEVLL 185 Query: 184 RVIRELRKEGRVILYVSHRMEEIFALSDAITVFKDGRYVKTFTDMQQVDHDALVQAMVGR 243 +IR+L+ +G +Y+SH+++E+ A+ D I+V +DG+++ T T M +D ++ MVGR Sbjct: 186 DIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIAT-TAMTDMDIPKIITQMVGR 244 Query: 244 DIGDIYGWQPRSYGEERLRLDAVKAPGVRTP-------ISLAVRSGEIVGLFGLVGAGRS 296 ++ ++Y +P GE V V P IS ++ GEI+G+ GLVGAGR+ Sbjct: 245 EMSNLYPTEPHDIGEVIFEARHVTCYDVDNPRRKRVDDISFVLKRGEILGIAGLVGAGRT 304 Query: 297 ELMKGMFGGTQIT-AGQVYIDQQPIDIRKPSHAIAAGMMLCPEDRKAEGIIPVHSVRDNI 355 EL+ +FG G+V+++ Q ID R P +I AG+ + PEDRK +GIIP V NI Sbjct: 305 ELVSALFGAYPGRYEGEVWLNGQQIDTRTPLKSIRAGLCMVPEDRKRQGIIPDLGVGQNI 364 Query: 356 NISARRKHVLGGCVINNGWEENNADHHIRSLNIKTPGAEQLIMNLSGGNQQKAILGRWLS 415 ++ + I+ E + D I +++KT I +LSGGNQQKA+L + L Sbjct: 365 TLAVLDNYSKL-TRIDAEAELGSIDKEIARMHLKTASPFLPITSLSGGNQQKAVLAKMLL 423 Query: 416 EEMKVILLDEPTRGIDVGAKHEIYNVIYALAAQGVAVLFASSDLPEVLGVADRIVVMREG 475 + +V++LDEPTRG+DVGAK+EIY ++ ALAA+GV+++ SS+L EVLGV+DR++V+ +G Sbjct: 424 TKPRVLILDEPTRGVDVGAKYEIYKLMGALAAEGVSIIMVSSELAEVLGVSDRVLVIGDG 483 Query: 476 EIAGELLHEQADERQALSLAM 496 ++ G+ ++ + + Q L+ A+ Sbjct: 484 QLRGDFINHELTQEQVLAAAL 504 Lambda K H 0.319 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 729 Number of extensions: 50 Number of successful extensions: 12 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 504 Length of database: 518 Length adjustment: 35 Effective length of query: 469 Effective length of database: 483 Effective search space: 226527 Effective search space used: 226527 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory