Align Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale)
to candidate AO356_28510 AO356_28510 xylose transporter
Query= uniprot:P0DTT6 (251 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28510 Length = 518 Score = 144 bits (364), Expect = 3e-39 Identities = 81/241 (33%), Positives = 147/241 (60%), Gaps = 4/241 (1%) Query: 1 MSD-LLEIRDVHKSFGAVKALDGVSMEINKGEVVALLGDNGAGKSTLIKIISGY--HKPD 57 MSD LL++ + K+FG VKAL+G+ +++ GE V L G+NGAGKSTL+K++S H Sbjct: 1 MSDYLLQMNGIVKTFGGVKALNGIDIKVRPGECVGLCGENGAGKSTLMKVLSAVYPHGTW 60 Query: 58 RGDLVFEGKKVIFNSPNDARSLGIETIYQDLALIPDLPIYYNIFLAREVTNKIF-LNKKK 116 G+++++G+ + S ++ + GI I+Q+L L+PDL + NIF+ E+T +N Sbjct: 61 EGEIIWDGQPLKAQSISETEAAGIVIIHQELTLVPDLSVAENIFMGHELTLPGGRMNYPA 120 Query: 117 MMEESKKLLDSLQIRIPDINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVE 176 M+ ++ L+ L++ ++++ V GG +Q V +A+A+ A+++++DEP++AL+ E Sbjct: 121 MIHRAEALMRELKVPDMNVSLPVSQYGGGYQQLVEIAKALNKQARLLILDEPSSALTRSE 180 Query: 177 ARKVLELARNLKKKGLGVLIITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEV 236 +L++ R+LK KG+ + I+H + + V D I V+ GK I + ++ +I Sbjct: 181 IEVLLDIIRDLKAKGVACVYISHKLDEVAAVCDTISVIRDGKHIATTAMTDMDIPKIITQ 240 Query: 237 M 237 M Sbjct: 241 M 241 Score = 74.7 bits (182), Expect = 4e-18 Identities = 55/227 (24%), Positives = 117/227 (51%), Gaps = 24/227 (10%) Query: 18 KALDGVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDR--GDLVFEGKKVIFNSPND 75 K +D +S + +GE++ + G GAG++ L+ + G + P R G++ G+++ +P Sbjct: 278 KRVDDISFVLKRGEILGIAGLVGAGRTELVSALFGAY-PGRYEGEVWLNGQQIDTRTPLK 336 Query: 76 ARSLGIETIYQDL---ALIPDLPIYYNIFLAREVTNKIFLNKKKMME-ESKKLLDSLQIR 131 + G+ + +D +IPDL + NI LA + N K+ +++ L S+ Sbjct: 337 SIRAGLCMVPEDRKRQGIIPDLGVGQNITLA------VLDNYSKLTRIDAEAELGSIDKE 390 Query: 132 IPDINMK-------VENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLELA 184 I +++K + +LSGG +Q +A+ + +++++DEPT + V ++ +L Sbjct: 391 IARMHLKTASPFLPITSLSGGNQQKAVLAKMLLTKPRVLILDEPTRGVDVGAKYEIYKLM 450 Query: 185 RNLKKKGLGVLIITHNIIQGYEVADRIYVLD----RGKIIFHKKKEE 227 L +G+ +++++ + + V+DR+ V+ RG I H+ +E Sbjct: 451 GALAAEGVSIIMVSSELAEVLGVSDRVLVIGDGQLRGDFINHELTQE 497 Lambda K H 0.318 0.137 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 258 Number of extensions: 17 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 251 Length of database: 518 Length adjustment: 29 Effective length of query: 222 Effective length of database: 489 Effective search space: 108558 Effective search space used: 108558 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory